Author: Benson, S.V.
Paper Title Page
MOPAB004 JSPEC - A Simulation Program for IBS and Electron Cooling 49
 
  • H. Zhang, S.V. Benson, M.W. Bruker, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
Intrabeam scattering is an important collective effect that can deteriorate the properties of a high-intensity beam, and electron cooling is a method to mitigate the IBS effect. JSPEC (JLab Simulation Package for Electron Cooling) is an open-source program developed at Jefferson Lab, which simulates the evolution of the ion beam under the IBS and/or the electron cooling effect. JSPEC has been benchmarked with BETACOOL and experimental data. In this report, we will introduce the features of JSPEC, including the friction force calculation, the IBS expansion rate and electron cooling rate calculation, and the beam-dynamic simulations for the electron cooling process; explain how to set up the simulations in JSPEC; and demonstrate the benchmarking results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB004  
About • paper received ※ 19 May 2021       paper accepted ※ 21 May 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB036 The Accelerator Design Progress for EIC Strong Hadron Cooling 1424
 
  • E. Wang, S. Peggs, V. Ptitsyn, F.J. Willeke, W. Xu
    BNL, Upton, New York, USA
  • S.V. Benson
    JLab, Newport News, Virginia, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • C.M. Gulliford, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • C.E. Mayes
    Xelera Research LLC, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy,
The Electron-Ion Collider will achieve a luminosity of 1034 cm-2 s−1 by incorporating strong hadron cooling to counteract hadron Intra-Beam Scattering, using a coherent electron cooling scheme. An accelerator will deliver the beams with key parameters, such as 1 nC bunch charge, and 1e-4 energy spread. The paper presents the design and beam dynamics simulation results. Methods to minimize beam noise, the challenges of the accelerator design, and the R&D topics being pursued are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB036  
About • paper received ※ 16 May 2021       paper accepted ※ 11 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB181 Demonstration of Electron Cooling using a Pulsed Beam from an Electrostatic Electron Cooler 1827
 
  • M.W. Bruker, S.V. Benson, A. Hutton, K. Jordan, T. Powers, R.A. Rimmer, T. Satogata, A.V. Sy, H. Wang, S. Wang, H. Zhang, Y. Zhang
    JLab, Newport News, Virginia, USA
  • J. Li, F. Ma, X.M. Ma, L.J. Mao, X.P. Sha, M.T. Tang, J.C. Yang, X.D. Yang, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
  • H. Zhao
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
Electron cooling continues to be an invaluable technique to reduce and maintain the emittance in hadron storage rings in cases where stochastic cooling is inefficient and radiative cooling is negligible. Extending the energy range of electron coolers beyond what is feasible with the conventional, electrostatic approach necessitates the use of RF fields for acceleration and, thus, a bunched electron beam. To experimentally investigate how the relative time structure of the two beams affects the cooling properties, we have set up a pulsed-beam cooling device by adding a synchronized pulsing circuit to the conventional electron source of the CSRm cooler at Institute of Modern Physics *. We show the effect of the electron bunch length and longitudinal ion focusing strength on the temporal evolution of the longitudinal and transverse ion beam profile and demonstrate the detrimental effect of timing jitter as predicted by theory and simulations. Compared to actual RF-based coolers, the simplicity and flexibility of our setup will facilitate further investigations of specific aspects of bunched cooling such as synchro-betatron coupling and phase dithering.
* M. W. Bruker et al., Phys. Rev. Accel. Beams 24, 012801 (2021)
 
poster icon Poster TUPAB181 [3.699 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB181  
About • paper received ※ 19 May 2021       paper accepted ※ 15 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB005 Design Status Update of the Electron-Ion Collider 2585
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, M. Mapes, D. Marx, G.T. McIntyre, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, B. Podobedov, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, S. Verdú-Andrés, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • S.V. Benson, J.M. Grames, F. Lin, T.J. Michalski, V.S. Morozov, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • K.E. Deitrick, C.M. Gulliford, G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The design of the electron-ion collider EIC to be constructed at Brookhaven National Laboratory has been continuously evolving towards a realistic and robust design that meets all the requirements set forth by the nuclear physics community in the White Paper. Over the past year activities have been focused on maturing the design, and on developing alternatives to mitigate risk. These include improvements of the interaction region design as well as modifications of the hadron ring vacuum system to accommodate the high average and peak beam currents. Beam dynamics studies have been performed to determine and optimize the dynamic aperture in the two collider rings and the beam-beam performance. We will present the EIC design with a focus on recent developments.
 
poster icon Poster WEPAB005 [2.095 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005  
About • paper received ※ 14 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)