Paper | Title | Page |
---|---|---|
MOPAB152 | High Power Tests of Brazeless Accelerating Structures | 532 |
|
||
Funding: DOE SBIR Grant #DE-SC0017749 A typical accelerating structure is a set of copper resonators brazed together. This multi step process is expensive and time consuming. In an effort to optimize production process for rapid prototyping and overall reduction of accelerator cost we developed a split block brazeless accelerating structure. In such structure the vacuum is sealed by the use of knife edges, similar to an industry standard conflat technology. In this paper we present high power tests of several different brazeless structures. First, an inexpensive 1 MeV accelerator powered by radar magnetron. Second, a high gradient power extractor tested at Argonne Wakefield Accelerator Facility. In this experiment a high charge electron beam generated a 180 MW peak power pulse. Finally, we report on high power testing of a brazeless x-band accelerating structure at SLAC. |
||
Poster MOPAB152 [0.783 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB152 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 24 June 2021 issue date ※ 31 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB155 | Magnetic Breakdowns in Side-Coupled X-Band Accelerating Structures | 540 |
|
||
Funding: DOE SBIR Side coupled accelerating structures are popular in the industrial realizations of linacs due to their high shunt impedance and ease of tuning. We designed and fabricated a side-coupled X-band accelerating structure that achieved 133 MOhm/m shut impedance. This structure was fabricated out of two halves using a novel brazeless approach. The two copper halves are joined together using a stainless steel joining piece with knife edges that bite into copper. This structure had been tested at high power at SLAC National Accelerator Laboratory. The performance of the structure had been limited by magnetic breakdowns on the side-coupling cells. In this paper we will present results of the high gradient tests and after-test analysis. Scanning electron microscopy images show a typical magnetic-field induced breakdown. |
||
Poster MOPAB155 [1.069 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB155 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 23 June 2021 issue date ※ 01 September 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB167 | Status of Conduction Cooled SRF Photogun for UEM/UED | 1773 |
|
||
Funding: DOE #DE-SC0018621 Benefiting from the rapid progress on RF photogun technologies in the past two decades, the development of MeV range ultrafast electron diffraction/microscopy (UED and UEM) has been identified as an enabling instrumentation. UEM or UED use low power electron beams with modest energies of a few MeV to study ultrafast phenomena in a variety of novel and exotic materials. SRF photoguns become a promising candidate to produce highly stable electrons for UEM/UED applications because of the ultrahigh shot-to-shot stability compared to room temperature RF photoguns. SRF technology was prohibitively expensive for industrial use until two recent advancements: Nb3Sn and conduction cooling. The use of Nb3Sn allows to operate SRF cavities at higher temperatures (4K) with low power dissipation which is within the reach of commercially available closed-cycle cryocoolers. Euclid is developing a continuous wave (CW), 1.5-cell, MeV-scale SRF conduction cooled photogun operating at 1.3 GHz. In this paper, the technical details of the design and first experimental data are presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB167 | |
About • | paper received ※ 29 May 2021 paper accepted ※ 21 June 2021 issue date ※ 01 September 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB163 | An X-Band Ultra-High Gradient Photoinjector | 2986 |
|
||
Funding: This work was supported by DoE SBIR grant # DE-SC0018709. High brightness beams appealing for XFELs and UEM essentially imply a high current and a low emittance. To obtain such beams we propose to raise the accelerating voltage in the gun mitigating repealing Coulomb forces. An ultra-high gradient is achieved utilizing a short-pulse technology. We have designed a room temperature X-band 1,5 cell gun that is able to inject 4 MeV, 100 pC bunches with as low as 0.15 mcm normalized transverse emittance. The gun is operated with as high gradients as 400 MV/m and fed by 200 MW, 10 ns RF pulses generated with Argonne Wakefield Accelerator (AWA) power extractor. We report results of low RF power tests, laser alignment test results, and successful gun conditioning results carried out at nominal RF power. |
||
Poster WEPAB163 [5.427 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB163 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 02 June 2021 issue date ※ 19 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB164 | Electrodeless Diamond Beam Halo Monitor | 2990 |
|
||
Funding: This work was supported by DoE SBIR grant # DE-SC0019642. Beam halo measurement is important for novel x-ray free-electron lasers which have remarkably high repetition rate and average power. We propose diamond as a radiation hard material that can be used to measure the flux of passing particles based on a particle-induced conductivity effect. Our diamond electrodeless monitor is based on a microwave measurement of the change in the resonator coupling and eigenfrequency. For measurements, we put a sensitive diamond sample in a resonator that intercepts the halo. By measuring the change in RF properties of the resonator, one can infer the beam halo parameters scanning across the beam to map its transverse distribution. In recent experiments we used a Vertical Beam Test Stand (VBS), delivered DC electron beam of the 20-200 keV energy with the current up to 50 µA, to characterize several diamond samples. We have designed and fabricated a scanning diamond monitor, based on an X-band resonator, which was tested at Argonne Wakefield Accelerator (AWA) with a multi-MeV electron beam. |
||
Poster WEPAB164 [5.138 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB164 | |
About • | paper received ※ 14 May 2021 paper accepted ※ 07 June 2021 issue date ※ 31 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |