Author: Tyukhtin, A.V.
Paper Title Page
MOPGW060 Cherenkov Radiation at Off-Axis Bunch Passage Through Dielectric Concentrator 225
 
  • S.N. Galyamin, A.V. Tyukhtin, V.V. Vorobev
    Saint Petersburg State University, Saint Petersburg, Russia
 
  Funding: Work supported by the Grant from Russian Foundation for Basic Research (No. 17-52-04107).
Development of tunable systems for non-invasive bunch diagnostics is a modern trend in accelerator physics. Certain dielectric targets are considered in this context, for example, dielectric cones or prisms. Moreover, all-dielectric target which increase the radiated Cherenkov field near the predetermined focus up to several orders of magnitude has been described* and field near its focus and sensitivity of this target have been analyzed**. Here we consider a non-symmetrical case where charge trajectory has a shift with respect to structure axis. We develop analytical approach for description of Cherenkov radiation, perform three-dimensional simulations and compare the results.
* S.N. Galyamin and A.V. Tyukhtin, Phys. Rev. Lett., 113, 064802 (2014).
** S.N. Galyamin and A.V. Tyukhtin, Nucl. Instr. Meth. Phys. Res. B. 2017. V. 402. P.185-189.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW060  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW061 Radiation from a Dielectrically Loaded Waveguide with Open End 228
 
  • S.N. Galyamin, A.A. Grigoreva, A.V. Tyukhtin, V.V. Vorobev
    Saint Petersburg State University, Saint Petersburg, Russia
  • A. Aryshev
    KEK, Ibaraki, Japan
 
  Funding: Work supported by Russian Science Foundation (Grant No. 18-72-10137).
Open-ended waveguide structures with dielectric loading excited by specially prepared electron bunches are considered as promising candidates for development of contemporary sources of Terahertz (THz) radiation. Despite of the fact that both ordinary vacuum THz devices (e.g., backward wave oscillator) are widely available and other mechanisms for THz generation are discussed, beam driven sources are still extremely attractive due to the extraordinary peak power of THz radiation*. In this report, we study electromagnetic (EM) field produced by a charged particle bunch exiting an open-ended circular waveguide with dielectric filling placed inside collinear vacuum waveguide of a larger radius. Based on the previously developed theory**, we mainly investigate Cherenkov radiation generated penetrated vacuum regions of the structure due to the diffraction mechanism. We pay attention to the case of a train of short bunches resulting in high-order Cherenkov modes excitation. We also develop analytical procedure allowing performing the limiting process to the case of infinite radius of the outer waveguide.
* B.D. O’Shea et al., Nature Communications, Vol. 7, P. 12763, (2016).
** S.N. Galyamin et al., J. Instrumentation, Vol. 13, P. C02012 (2018).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW061  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW062 Radiation of a Charge Moving in a Wire Structure 231
 
  • S.N. Galyamin, A.V. Tyukhtin, V.V. Vorobev
    Saint Petersburg State University, Saint Petersburg, Russia
  • A.I. Benediktovitch
    EuXFEL, Hamburg, Germany
  • A.I. Benediktovitch
    BSU, Minsk, Belarus, Belarus
 
  Funding: This work is supported by the grant from Russian Foundation for Basic Research (No. 17-52-04107).
In the X-ray frequency region, interaction of relativistic electrons with crystals results in parametric X-ray radiation (PXR), with its frequency being determined by distance between crystallographic planes and direction of electron motion. If instead of crystal one considers an artificial periodic structure with periods of the order of mm, one can expect emission of radiation of a similar nature at terahertz (THz) frequencies. This frequency range is of significant interest during last decade due to its prospective applications. Moreover, artificial wire-like structures are considered as a promising alternative to conventional dielectric structures for wakefield acceleration*. Here we consider electromagnetic (EM) field produced by a charged particle bunch moving through a lattice of parallel conducting wires. We present several approaches for analysis of EM field in the described wire structure. First, conventional two-wave approximation for describing the "short-wave response" is developed. Second, we use the effective medium approach and describe the "long-wave" part of the spectrum. Third, we develop a method based on vibrator antenna theory which can be useful for finite length wire structure.
* P.D. Hoang, et al., Phys. Rev. Lett., V. 120, P. 164801 (2018).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW062  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW064 On Wakefield in Dielectric Waveguide with Shallow Corrugation of Metallic Wall 237
 
  • A.V. Tyukhtin, E.R. Akhmatova, T.Yu. Alekhina, S.N. Galyamin, V.V. Vorobev
    Saint Petersburg State University, Saint Petersburg, Russia
 
  Funding: This work was supported by the Russian Science Foundation (Grant # 18-72-10137).
Bunch radiation in periodical waveguides was mainly analyzed for situations when wavelengths are comparable to the structure period (Smith-Purcell emission). However, it is also of interest to study the "long-wave radiation" with wavelengths which are much larger than the structure period*,**. In such situation, the exact boundary conditions on the complicated periodic surface can be replaced with the equivalent boundary conditions (EBC) which must be fulfilled on the smooth surface. Earlier we considered with this approach radiation of the bunch moving along the axis of circular vacuum corrugated waveguide**. Comparison of analytical results with COMSOL simulations showed high accuracy of the EBC method. Here we analyze an analogous problem for the waveguide with corrugated wall and dielectric filling under condition that Cherenkov effect takes place in the dielectric. Due to this fact the radiation differs radically from that in the vacuum waveguide. At the same time, the radiation has essential differences from the one in the usual dielectric waveguide. The radiation properties in the waveguide under consideration and its differences from the radiation in the waveguide with smooth wall are analyzed.
* G. Stupakov, K. Bane, Phys. Rev. ST-AB, 15 (2012) 124401.
** A.V. Tyukhtin et al, J. of Instrumentation, 13 (2018) C04009.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW064  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYYPLS3 Development of Methods for Calculation of Bunch Radiation in Presence of Dielectric Objects 2274
 
  • A.V. Tyukhtin, E.S. Belonogaya, S.N. Galyamin, V.V. Vorobev
    Saint Petersburg State University, Saint Petersburg, Russia
 
  Funding: This work was supported by the Russian Science Foundation (Grant # 18-72-10137).
Radiation of charged particles moving in presence of dielectric targets is of interests for various applications in accelerator and beam physics*. Typically, the size of the target is much larger than the wavelengths under consideration. This fact gives us an obvious small parameter of the problem and allows developing approximate methods of analysis. We develop two methods: "ray-optical method" and "aperture method"**. These methods can be very effective for all situations where we can find the tangential field components on the "aperture" which is an object boundary illuminated by Cherenkov radiation. We apply the aperture method to different dielectric objects including a prism, a cone, and a ball. Electromagnetic field is analyzed on different distances from the objects. The special attention is given to investigation of the field in the far-field (Fraunhofer) area having large importance for various applications. We obtain analytical results for different objects, demonstrate typical radiation patterns and discuss new physical effects, in particular, the phenomenon of concentration of radiation and effect of "Cherenkov spotlight". Prospects of use of aperture method and ray-optical one for other objects are discussed as well.
* R.Kieffer et al, PRL, 121, 054802 (2018).
** E.S.Belonogaya et al, JOSA B, 32, 649 (2015); S.N.Galyamin, A.V.Tyukhtin, PRL, 113, 064802 (2014); A.V.Tyukhtin et al, J. Instrum., 13, C02033 (2018).
 
slides icon Slides WEYYPLS3 [4.063 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEYYPLS3  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW050 Electromagnetic Field of a Charge Moving Through a Channel in Magnetized Plasma 3700
 
  • A.A. Grigoreva, T.Yu. Alekhina, S.N. Galyamin, A.V. Tyukhtin, V.V. Vorobev
    Saint Petersburg State University, Saint Petersburg, Russia
 
  Funding: Work supported by Russian Science Foundation (Grant No. 18-72-10137).
Recent success in beam-driven plasma wakefiled acceleration scheme with two proton bunches propagating through a hollow plasma channel* stimulates the research activity in this area. In this report, we investigate possibilities for additional tuning the structure of the accelerating field by the external magnetic field applied. The structure of surface waves at the channel boundary is of interest, and special attention is paid to the field characteristics that are essential for the wakefield acceleration method (amplitude of the accelerating field, the structure of the deflecting field) and the possibilities of controlling these characteristics by means of the external field.
* Gessner S.J. et al. Proc. IPAC2016. THPPA01.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW050  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)