Paper | Title | Page |
---|---|---|
MOPGW080 | Optics Measurements in the CERN PS Booster Using Turn-by-Turn BPM Data | 285 |
|
||
As part of the LHC Injector Upgrade Project the injection of the CERN PS Booster will be changed to increase intensity and brightness of the delivered beams. The new injection scheme is likely to give rise to beta beating above the required level of 5\% and new measurements are required. Achieving accurate optics measurements in PSB lattice is a challenging task that has involved several improvements in both hardware and software. This paper summarizes all the improvements that have been performed in the optics measurement acquisition system together with a brief summary of the first results obtained. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW080 | |
About • | paper received ※ 11 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP022 | K-Modulation in Future High Energy Colliders | 476 |
|
||
K-Modulation of the quadrupoles closest to the interaction point (IP) has been an indispensable tool to accurately measure the beta-function in the interaction point (β*) in the Large Hadron Collider (LHC) at CERN. K-Modulation may become even more important to control the lower β* and reach the design luminosities in the High-Luminosity LHC (HL-LHC) and the Future Circular Collider (FCC). K-Modulation results also provide important input for the luminosity calibration and help in the identification and correction of errors in the machines. This paper presents a method for determining β* using K-Modulation adapted to the characteristic layout of both colliders. Using the latest models for the HL-LHC and the FCC-hh, estimated uncertainties on the measurements are presented. The results are compared to the accuracy of an alternative modulation scheme using a different powering scheme. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP022 | |
About • | paper received ※ 06 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP023 | Dynamic Aperture at Injection Energy for the HE-LHC | 480 |
SUSPFO101 | use link to see paper's listing under its alternate paper code | |
|
||
As part of the Future Circular Collider study, the High Energy LHC (HE-LHC) is a proposed hadron collider situated in the already existing LHC tunnel. It aims at achieving a center of mass energy of 27 TeV, almost doubling the design c.o.m. energy of the LHC. This increase in energy relies on the use of 16 T Nb3Sn dipoles to be developed for the FCC-hh. The field quality of these dipoles is expected to have a big impact on the Dynamic Aperture (DA) at injection energy and subsequently tracking studies are conducted to evaluate the impact of magnetic field errors on the beam dynamics. In the following the results of these studies for the different injection energies considered for the HE-LHC are presented and a possible strategy for increasing the DA are discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP023 | |
About • | paper received ※ 06 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP026 | HE-LHC Optics Design Options | 492 |
SUSPFO103 | use link to see paper's listing under its alternate paper code | |
|
||
The High Energy Large Hadron Collider (HE-LHC), a possible successor of the High Luminosity Large Hadron Collider (HL-LHC) aims at reaching a centre-of-mass energy of about 27 TeV using basically the same 16 T dipoles as for the hadron-hadron Future Circular Collider FCC-hh. Designing the HE-LHC results in a trade off between energy reach, beam stay clear as well as geometry offset with respect to the LHC. In order to best meet the requirements, various arc cell and dispersion suppressor options have been generated and analysed, before concluding on two baseline options, which are presented in this paper. Merits of each design are highlighted and possible solutions for beam stay clear minima are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP026 | |
About • | paper received ※ 02 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP027 | Second Order Dispersion Measurements in LHC | 496 |
|
||
The quadratic dependence of the orbit on the relative momentum offset, also known as second order dispersion, is analysed for the first time for the LHC. In this paper, the measurement and analysis procedure are described. Results and implications on future optics are discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP027 | |
About • | paper received ※ 02 May 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP033 | LHC Run 2 Optics Commissioning Experience in View of HL-LHC | 508 |
|
||
LHC Run 2 has achieved a beta lower than a factor 2 below design. This has significantly challenged optics measurement and correction techniques in the linear and non-linear regimes, leading to the development of new approaches. Furthermore, experimenting with a large variety of optics has allowed facing the difficulties of future optics and gaining understanding of the machine imperfections. A summary of these aspects is given in view of their implications for the HL-LHC Project. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP033 | |
About • | paper received ※ 07 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP034 | Tuning Studies of the CLIC 380 Gev Final Focus System | 512 |
|
||
We present tuning studies of the Compact Linear Collider final-focus system under static imperfections including transverse misalignments, roll errors and magnetic strength errors. The tuning procedure consists of beam-based alignment for correcting the linear part of the system followed by sextupole pre-alignment and use of multipole tuning knobs. The sextupole pre-alignment is very robust and allows the tuning time to be greatly reduced. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP034 | |
About • | paper received ※ 06 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP037 | Updated High-Energy LHC Design | 524 |
|
||
Funding: This work was supported in part by the European Commission under the HORIZON 2020 project ARIES no.730871, and by the Swiss Accelerator Research and Technology collaboration CHART. We present updated design parameters for a future High-Energy LHC. A more realistic turnaround time has led to a revision of the target peak luminosity, as well as a choice of a larger IP beta function, and longer physics fills. Pushed parameters of the Nb3Sn superconducting cable together with a modified layout of the 16 T dipole magnets resulted in revised field errors, updated dynamic-aperture simulations, and an associated re-evaluation of injector options. Collimators in the dispersion suppressors help achieve satisfactory cleaning performance. Longitudinal beam parameters ensure beam stability throughout the cycle. Intrabeam scattering rates and Touschek lifetime appear benign. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP037 | |
About • | paper received ※ 10 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP038 | Investigation of CLIC 380 GeV Post-Collision Line | 528 |
|
||
It has been proposed that the Compact Linear Collider (CLIC) be commissioned in stages, starting with a lower-energy, 380 GeV version for the first stage, and concluding with a 3 TeV version for the final stage. In the Conceptual Design Report (CDR) published in 2012, the post-collision line is described for the 3 TeV and 500 GeV stages. However, the post-collision line for the 380 GeV design was not investigated. This work will describe the simulation studies performed in BDSIM for the 380 GeV post-collision line. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP038 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP039 | Developments in the Experimental Interaction Regions of the High Energy LHC | 532 |
|
||
Funding: Work supported by the Swiss institute for Accelerator Research and Technology , CHART. The High Energy LHC (HE-LHC) aims to collide 13.5 TeV protons in two high luminosity experiments and two low luminosity experiments. In the following, the recent updates in the two high luminosity experimental interaction regions (EIR) of the HE-LHC will be illustrated. These EIR aim to focus the beams to a β* of 0.45 m at the interaction point (IP) to achieve a lifetime integrated luminosity of 10 ab-1. On top of the triplet optics designed to achieve this, it will present energy deposition driven separation dipole designs, optics solutions for the matching section and dispersion suppressors as well as studies involving the integration into the lattice options. In particular it will outline geometric considerations, spurious dispersion suppression as well as results from dynamic aperture studies. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP039 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEYYPLM2 | The 2018 Heavy-Ion Run of the LHC | 2258 |
|
||
The fourth one-month Pb-Pb collision run brought LHC Run 2 to an end in December 2018. Following the tendency to reduce dependence on the configuration of the preceding proton run, a completely new optics cycle with the strongest ever focussing at the ALICE and LHCb experiments was designed and rapidly implemented, demonstrating the maturity of the collider’s operating modes. Beam-loss monitor thresholds were carefully adjusted to provide optimal protection from the multiple loss mechanisms in heavy-ion operation. A switch from a basic bunch-spacing of 100 ns to 75 ns was made as the beam became available from the injector chain. A new record luminosity, 6 times the original design and close to the operating value proposed for HL-LHC, provided validation of the strategy for mitigating quenches due to bound-free pair production (BFPP) at the interaction points of the ATLAS and CMS experiments. Most of the beam parameters of the HL-LHC Pb-Pb upgrade were attained during this run and the integrated luminosity goals for the first 10 years of LHC operation were substantially exceeded. | ||
![]() |
Slides WEYYPLM2 [10.884 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEYYPLM2 | |
About • | paper received ※ 08 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEYYPLM3 | First Results of the Compensation of the Beam-Beam Effect with DC Wires in the LHC | 2262 |
|
||
The compensation of the long-range beam-beam interactions using DC wires is presently under study as an option for enhancing the machine performance in the frame of the High-Luminosity LHC project (HL-LHC). The original idea dates back more than 15 years. After the installation of four wire prototypes in the LHC in 2018, a successful experimental campaign was performed during the last months. The experimental setup and the main results are reported in this paper. | ||
![]() |
Slides WEYYPLM3 [6.371 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEYYPLM3 | |
About • | paper received ※ 06 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW081 | Unsupervised Machine Learning for Detection of Faulty Beam Position Monitors | 2668 |
SUSPFO097 | use link to see paper's listing under its alternate paper code | |
|
||
Unsupervised learning includes anomaly detection techniques that are suitable for the detection of unusual events such as instrumentation faults in particle accelerators. In this work we present the application of decision trees-based algorithm to faulty BPMs detection at the LHC. This method achieves significant improvements in quality of optics measurements and allows to identify relevant signal properties that contribute to fault detection. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW081 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW116 | LHC Optics Measurement and Correction Software Progress and Plans | 2773 |
|
||
LHC Optics Measurements and Corrections (OMC) require efficient on-line software applications to acquire and analyze data and to compute the necessary corrections. During Run 2 various measurement and correction techniques have been merged to yield unprecedented optics quality, increasing the required number of steps to finalize the optics commissioning and the size of the software project. In turn, this calls for a higher level of automation, where machine learning techniques are being implemented. During the Long Shutdown 2 a large refactoring of the codes will be in place to improve performance, maintainability and extensibility. A description of the current status of the software and future plans is given. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW116 | |
About • | paper received ※ 07 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPRB077 | Optics Corrections Using Machine Learning in the LHC | 3990 |
|
||
Optics corrections in the LHC are based on a response matrix approach between available correctors and observables. Supervised learning has been applied to quadrupole error prediction at the LHC giving promising results in simulations and surpassing the performance of the traditional approach. A comparison of different algorithms is given and it is followed by the presentation of further possible concepts to obtain optics corrections using machine learning. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB077 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |