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Abstract
Optics corrections in the LHC are based on a response

matrix between available correctors and observables. Super-

vised learning has been applied to optics correction in the

LHC demonstrating promising results on simulations and

demonstrating the ability to reach acceptably low β-beating.

A comparison of different algorithms to the traditional re-

sponse matrix approach is given, and it is followed by the

presentation of further possible concepts to obtain optics

corrections using machine learning (ML).

INTRODUCTION
ML techniques have found their application in a wide

range of accelerator control tasks [1,2]. Attempts to build

beam diagnostics and beam control systems using ML have

been made already in the past decades [3–5], including orbit

corrections using dipole field strengths predicted from the

orbit deviations using neural networks [3].

In the LHC, global optics corrections are performed trim-

ming quadrupolar fields aiming to reduce the difference

between the measured and design optics functions around

the ring. The strengths of the quadrupole circuits required

to achieve the desired low β-beating are obtained using the

Response Matrix (RM) approach [6]. The identification of

local error sources and finding the correction is based on

the Segment-by-Segment technique [7] and is used mostly

around the interaction points (IPs). In this work we focus

on global optics correction only, the local corrections in the

triplets region are usually performed prior to global correc-

tion computation.

SUPERVISED LEARNING APPLIED
TO OPTICS CORRECTIONS

In order to compute the corrections, the measured data

have to be compared with the ideal optics design. The devia-

tions from ideal optics have to be compensated by computed

corrections [6, 8, 9]. In terms of machine learning, this task

can be defined as a regression problem that can be solved

by training a model using measurements and corresponding

corrections. Such a regression model requires a large dataset

in order to be able to generalize and produce reliable results.

As corrections are only performed few times per year, train-

ing on corrections from the past is not possible, since not

enough data is available. Another approach for data acquisi-

tion is to simulate optics perturbation with known errors in

the MAD-X variables that correspond to physical circuits

in the machine. To correct the perturbed optics the circuit
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strengths predicted by the regression model just have to be

applied with the opposite sign.

Dataset Generation
In order to create a training set, random errors are in-

troduced into the MAD-X-variables that represent physical

circuits. It has to be noted though, that in the simulation of

the training set we use the strength of the circuits and each

circuit represents in general the powering of a set of several

quadrupoles. While simulating the data, the circuit errors

are the input of the simulations and the produced optics func-

tions perturbed by the introduced errors are the output. The

data is generated for Beam 1 for the 2016 optics settings,

with β∗ = 40 cm and using injection tunes.

To train the model we flip this relation, such that the circuit

errors have to be found based on given optics perturbation.

The optics measurements in the LHC are mainly concerned

by the phase advance measured between neighbouring beam

position monitors (BPM). Therefore, the phase advance de-

viations from the nominal optics measured at each BPM are

considered as model input (features). A correction knob,

which is a list containing the correction applied to each vari-

able, is the desired output of the trained model. A simulation

Figure 1: Simulated beta-beating after applying corrections

computed with linear response matrix and predicted by Ran-

dom Forest regressor on a measurement simulated with cir-

cuit errors and no noise. The mean absolute error between

the introduced errors and computed corrections is 2 × 10−6

for response matrix and 3 × 10−8 for Random Forest.
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data set of 100 000 samples was divided into train and test

set (70% and 30% respectively), each sample pair consists

of 1106 inputs (number of BPMs in both planes) and 190

outputs (correction variables).

Training and Model Evaluation
Several scoring techniques exist in the domain of model

evaluation. In previous studies [10, 11] the comparison be-

tween ML models has been done based on the mean absolute

error between true errors in the circuits and model output.

The optics measurements in the test set were given perturba-

tions by circuits only (not individual magnets) and no noise.

The ML model trained using Random Forest (RF) regres-

sor [12] achieved remarkably good results on correcting the

β-beating as shown in Fig. 1. However, with the introduc-

tion of noise and more realistic simulation conditions, the

time required to train a RF increased significantly from the

order of tens of minutes to several hours, making this model

unfeasible for further application for now. The reason for

the increased training time has to be studied in the future.

In this study we aim to predict corrector values from

simulated optics perturbed by individual quadrupoles which

reflects the real state of optics perturbations in the LHC. The

test dataset generated with circuit errors is therefore used

only to control the fitting of the models during the training.

To assert the ability of the model to predict the correctors

values from the optics perturbed by single magnets, the

measurements are simulated under following conditions:

• Gaussian distribution of quadrupolar errors with

3 × 10−6m−2.

• Quadrupoles in the IP triplets and skew quadrupoles

are excluded, since these errors are assumed to have

been corrected with local correction techniques. These

error sources can be considered in a next study.

• Phase advance noise is 10−3 2π in a BPM at β = 171 m

and scaled with the inverse square root of the β at the

rest of BPMs.

The regression model for correction prediction can be

trained using different ML techniques. These techniques

usually require careful optimization and hyper-parameter

tuning. In this study we use non-optimized models to ac-

quire preliminary results on ability of ML models to correct

the optics. The model has to be able to find an approxi-

mation of the function that describes the relation between

input and output by learning from the data. We start with a

ordinary least squares linear regression model. With new

incoming training data samples, the model updates the fit

by minimizing the sum of the squares of the residuals [13].

As next step we increase the complexity of the model by

using Ridge regression, which applies regularization given

by the L2-norm [14] in order to penalize the regression coef-

ficients to achieve more stable prediction. Another method

considered for correction prediction is Orthogonal Match-

ing Pursuit (OMP) which is based on the K-SVD algorithm
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Figure 2: The composition of CNN implemented to pre-

dict 190 correctors values to correct the optics perturbed by

individual quadrupole errors.

using Batch Orthogonal Matching Pursuit [15]. The models

are implemented using scikit-learn python library [16].

Convolutional Neural Network
Regression tasks can be also solved using more complex

ML techniques such as neural networks. In this study we

use a special kind of neural networks called Convolutional

Neural Network (CNN) [17] which has found a wide appli-

cation in image-processing tasks demonstrating impressive

results [18] among others in high-energy physics [19]. The

main advantage of CNN is the ability to capture the spa-

tial dependencies through the application of learned filters.

In other words, the network can be trained to understand

and extract spatially correlated features. This fact makes

the CNN specially appealing for the application on correc-

tion prediction, as the determination of many optical pa-

rameters depends on the relationship between neighboring

BPMs [20–22]. Opposite to most of the existing applica-

tions, here we apply a CNN on non-image based data, but on

1-dimensional vectors of phase-advance errors. The Keras

python library [23] with TensorFlow backend [24] has been

used in order to build and train the CNN model. For the

first preliminary attempt presented in this study, we chose a

simple architecture shown in Fig. 2. The network uses ReLu

activation function [25] and the weights were initialized

using random uniform distribution.

The dataset generation using MAD-X took several hours

and it is the main concern regarding the time needed to

prepare a ML model. The training itself takes less than a

minute in case of regression models and around one hour

for a non-optimized CNN.

RESULTS
As described in the previous section, we evaluate the

models on simulated measurements perturbed by single-

quadrupole errors. The optics correction results using dif-

ferent ML models as well as the correction obtained by the

traditional response matrix approach are presented in Table 1.

Response matrix was performed using default strength delta

values for the LHC of 2 × 10−5m−2. Comparing the peak

and rms β-beating after applying the obtained corrections,
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Figure 3: Simulated β-beating after applying corrections computed with linear RM and CNN trained on errors in the

circuits, reducing rms β-beating from 9.5% to 3.2% and 3.0%, respectively. The measurement is simulated using the optics

with β∗= 40 cm and with the introduction of betatronic phase noise.

we conclude that all methods achieve similar performance.

Response matrix shows the largest peak β-beating and linear

regression produces smallest rms β-beating. Figure 3 shows

an example of β-beating correction using CNN demonstrat-

ing the ability of the method to achieve the correction compa-

rable with traditional response matrix method. To be noted is

that no tuning or optimization techniques have been applied

to the ML models and hence, further improvements of results

are expected. Considering possible model tuning, CNN has

a greater potential for improvements due to a bigger model

parameter space and various architecture options and hence,

this method is preferred to the others for future studies.

Table 1: Comparison of β-beating averaged over 100 simu-

lations considering the standard deviation of results as un-

certainty. The optics measurements are simulated using β∗=
40 cm optics from 2016 for Beam 1.

β-beating % peak rms
Uncorrected 32±10 11±3

Response Matrix 11±5 3±2

OMP 11±2 3.5±0.8

CNN 11±2 3.2±0.5

Ridge regression 10±2 2.9±0.8

Linear regression 9±2 2.6±1.7

FUTURE PLANS
Observing the great potential of CNN to obtain sufficient

optics corrections, the simple preliminary model used in

the presented research should be further improved and stud-

ied. CNN architecture allows to extract the intermediate

representation of the data, which can be extremely useful

for the understanding of the training process and possibly

find new relations or observables. Recently, iterative optics

corrections using analytic response matrix approach have

been implemented for the LHC [26]. CNN corrections can

be applied in a similar manner such that the corrections

produced by an iteration are used to compute the expected

optics which is then passed as the input for the next iteration.

Another possible solution for ML-based optics correc-

tion could be Reinforcement Learning [27]. This concept

is based on environment-agent interaction. The agent takes

an action on the environment, and the environment reacts

producing a reward, which is used by the agent to learn how

to improve its actions. For optics correction, minimization

of β-beating can be used as the task to be solved. The task of

the agent is to find optimal corrector values. As environment

we can use MAD-X in order to compute the new state (β-
beating) as response to the action (correctors values) taken

by agent model (e.g. neural network). Once the model has

been trained, it should be able to find optimal corrections

to achieve as low β-beating as possible. Opposite to pre-

sented supervised learning approach, no input-output pairs

are needed to train this model.

CONCLUSIONS
We have shown that every ML model applied in this study

is capable of predicting corrector variables values needed do

achieve β-beating comparable to traditional response matrix

approach even without any optimization or parameter tun-

ing. Linear regression performs better than response matrix,

probably due to the benefit of extracting an average linear

response over the training population instead of only using

the unperturbed model. This is an important first step to-

wards application of ML techniques to optics corrections in

particle accelerators. All supervised ML models achieved

similar results, but considering the large space for improve-

ments of CNN through tuning of the network parameters

and possibility to study the intermediate information repre-

sentation between the layers, CNN appears to have the most

potential to be applied to optics corrections and be useful to

improve optics quality.
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