

Content

- Ion Operation at the LHC
- 2018 Run
 - Configuration
 - Highlights and Hurdles
 - Limitations and Luminosity Performance
- Approaching "HL-LHC" performance

Heavy-lons in the LHC

The LHC spends most of its time colliding **protonproton (p-p)** in its 4 main experiments.

All are also highly capable heavy-ion experiments: **ALICE** (IP2) and **ATLAS** (IP1) / **CMS** (IP5) **LHCb** (IP8) since 2012

1 month/year colliding fully stripped lead (²⁰⁸Pb⁸²⁺) or Pb ions with protons.

History and Future ...

12 one-month heavy-ion runs between 2010 and 2030. 6/12 done.

New Optics and Magnetic Cycle

Run 2 Optics commissioning: R. Tomas et al., **MOPMP033**

- Same optics as p-p only in 2010.
- Since then heavy-ion cycles had their own specifications, incl. lower β^* and crossing angle in ALICE (IP2).
- With implementation of Achromatic Telescopic Squeeze (ATS) optics for p-p the decision was taken to fully decouple proton and ion cycles, leading to a redesign of the whole heavy-ion cycle in 2018:
 - > Redesign of Ramp & Squeeze
 - > Smallest β^* ever in ALICE & LHCb

$oldsymbol{eta}^*$ in m	IP1	IP2	IP5	IP8
Combined Ramp & Squeeze (proton cycle)	1 (1)	1 (10)	1 (1)	1.5 (3)
Squeeze at top energy (proton cycle)	0.5 (0.3)	0.5 (10)	0.5 (0.3)	1.5 (3)

Major Hurdles of the 2018 run ...

Ion source fault: No ions available for the first few days of the run.

- Many commissioning tasks were advanced with protons.
- Degraded beam quality during the first week of the run.
 - > Resulting in lower beam intensity and longer turn around time.
 - Shorter levelling periods and less time in physics.

ALICE luminosity lower than expected:

- Cause: beam deformation and reduced overlap at IP introduced by strong local betatron coupling in IR2.
- Solution: correction with skew-quadrpoles implemented during ALICE polarity reversal.
- Luminosity sharing strategies used until solution was found.
 - > Filling schemes (number and distribution of bunches).
 - Luminosity levelling target of ATLAS/CMS.

2018 Run Overview

Availability 87%

Typical Luminosity Evolution in 2018

ATLAS & CMS:

Short levelling period

Record: 6.1 x 10²⁷cm⁻²s⁻¹ peak luminosity

ALICE:

Levelled to design saturation level most of the time in physics.

Upgrade to \sim 7 x 10^{27} cm⁻²s⁻¹ in LS2.

LHCb:

Also levelled to design value

Secondary Beams Created in the Collision

Bound-free pair production (BFPP)

$$^{208} \mathrm{Pb}^{82+} + ^{208} \mathrm{Pb}^{82+} \longrightarrow ^{208} \mathrm{Pb}^{82+} + ^{208} \mathrm{Pb}^{81+} + \mathrm{e}^{+}$$

Has large interaction cross-section (~280b) in Pb-Pb collisions and is the main contribution to fast luminosity burn-off.

Loss Pattern around the Ring

Loss spikes around all IPs where ions collide ...

Deposit power >140W → exceeds quench limit of the superconducting magnets. Luminosity limit found at L≈2.3 x 10²⁷cm⁻² s⁻¹ (≅50W into magnet)

Quench Risk Mitigation with Orbit Bumps

Orbit bumps are used to move the secondary beam losses to a less vulnerable location in order to reduce risk of quench.

Technique operationally used in ATLAS/CMS since 2015.

BFPP Mitigation around ALICE & LHCb

Due to different optics around **ALICE** and **LHCb**, **bump technique does not work**.

ALICE

- Peak luminosity limited by detector saturation to 1 x 10²⁷cm⁻²s⁻¹.
- Bump to distribute losses over two cells.

LHCb

- No mitigation implemented.
- 75ns bunch scheme provides many more collisions in LHCb.
- Peak luminosity levelled 1 x 10²⁷cm⁻²s⁻¹

Collimation of Heavy Ions

Heavy-ion runs are challenging for collimation:

- Fragmentation within the collimator jaws.
- Cleaning efficiency ~100x worse than for protons.
- More cold losses (blue), especially in the dispersion suppressor (DS) behind collimation insertion (IR7).
- Risk to limit the intensity.

2018:

- Mitigation of loss spikes by optimizing collimator settings motivated by simulations.
- 7 out of 48 fills dumped by high losses.

For future runs: replacement of a dipole magnet by two 11T dipoles with a collimator in between.

Plots courtesy of N. Fuster-Martinez

Measurement of collimation efficiency by introducing transverse losses on a safe low-intensity beam.

Status LHC → HL-LHC

Most of HL-LHC performance demonstrated!

Status and studies of Pb beam in LHC injectors:

M. Meddahi et al, THXPLM1

S. Hirlaender et al, WEPTS040

A. Saa Hernandez et al, WEPTS042

H. Bartosik et al, MOPGW069

T. Argyropoulos et al, WEPTS039 and MOPGW070

	Pb-Pb (Design)	Pb-Pb (2018 achieved)	"HL-LHC" Pb-Pb (after LS2)	Upgrade Status		
Energy [TeV]	7 Z	6.37 Z	7 Z		Magnet training	
β* at IP (1/2/5,8) [m]	(0.5, -)	(0.5, 1.5)	(0.5, 1.5)			
Emittance [μm]	1.5	~2	1.65			
Bunch Intensity [10 ⁸ ions]	0.7	2.2	1.8			
No. Bunches	592	733	1232	<u>•</u>	SPS RF Upgrade (slip-stacking)	
Bunch Spacing	100ns	100ns → 75ns	50ns	<u>••</u>		
Peak Luminosity at IP1/2/5/8 [10 ²⁷ cm ⁻² s ⁻¹]	-/1/1/-	6.1/1/6.1/1	717171?		Lumi levelling	

Green values reached & exceeded LHC design

Some collisions in LHCb (not considered in detail yet)

Delivered Luminosity

LHC design goal of 1nb⁻¹ in Pb-Pb luminosity already exceeded.

Future performance estimate from 2021: 3 nb⁻¹/run → 12 nb⁻¹ in 4 more Pb-Pb runs

Conclusion

extraordinary injector performance

optimizations between & during runs

The LHC Heavy-Ion performance is much higher than originally foreseen.

"first 10-year" Pb-Pb luminosity goal of 1nb⁻¹ has been exceeded

demonstrated
"HL-LHC" peak luminosity
performance

Control of heavy-ion beam losses, like collimation & BFPP, is critical, complicated and may surprise.

Heavy ions will come back to the LHC end of 2021 after the injector and LHC hardware upgrades with the "HL-LHC" configuration.

Thank you for your attention!

