Paper |
Title |
Page |
THYPLS1 |
RF Controls Towards Femtosecond and Attosecond Precision |
3414 |
|
- F. Ludwig, J. Branlard, Ł. Butkowski, M.K. Czwalinna, M. Hierholzer, M. Hoffmann, M. Killenberg, T. Lamb, J. Marjanovic, U. Mavrič, J.M. Müller, S. Pfeiffer, H. Schlarb, Ch. Schmidt, L. Springer
DESY, Hamburg, Germany
- M. Kuntzsch, K. Zenker
HZDR, Dresden, Germany
|
|
|
In the past two decades, RF controls have improved by two orders in magnitude achieving meanwhile sub-10 fs phase stabilities and 10-4 amplitude precision. Advances are through improved field detection methods and massive usage of digital signal procession on very powerful field programmable gate arrays (FPGAs). The question rise, what can be achieved in the next 10 years? In this talk, a review is given of existing systems and strategies, current stability limitations of RF control system and new technologies with the potential to achieve attosecond resolutions.
|
|
|
Slides THYPLS1 [10.328 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THYPLS1
|
|
About • |
paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPRB018 |
Large-Scale Optical Synchronization System of the European XFEL with Femtosecond Precision |
3835 |
|
- T. Lamb, M.K. Czwalinna, M. Felber, C. Gerth, T. Kozak, J.M. Müller, H. Schlarb, S. Schulz, C. Sydlo, M. Titberidze, F. Zummack
DESY, Hamburg, Germany
|
|
|
Femtosecond pulsed optical synchronization systems have evolved over the last few years and are now a mature technique to synchronize FELs. A large-scale femtosecond-precision synchronization system with up to 44 end-stations has been constructed at the European XFEL to meet the FEL synchronization stability requirements. The synchronization system is used to phase-lock various laser systems with femtosecond accuracy, to precisely measure the electron bunch arrival time along the accelerator for fast arrival time feedbacks and to locally phase stabilize the phase of the RF reference signals for the accelerator RF controls on a femtosecond level. The architecture of the large-scale synchronization system and design choices made to achieve the reliability, maintainability and performance requirements are presented together with measurement results from the past year of operation.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB018
|
|
About • |
paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|