RF Controls Towards Femtosecond and Attosecond Precision.

IPAC 2019, 10th International Particle Accelerator Conference

Dr. Frank Ludwig on behalf of the LLRF, LbSync, Special Diag. team at DESY Melbourne, Australia, 23.05.2019

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

RF-Controls with fs-Precision

Source of timing jitter for accelerators / FELs

RF acceleration fields define arrival time:

Courtesy of H.Schlarb, CLEO2019

Low-Level-Radio-Frequency (LLRF) Control

High-frequency regulation – main noise sources: ACT, DWC, MO

Noise Contributions from LLRF-Subsystems

Beam timing Jitter:

Noise Contributions from LLRF-Subsystems

Noise Transfer Functions:

Real sub-systems:

 10^{7}

Beam timing Jitter:

LLRF-Systems – European XFEL

European

LLRF-Systems – Signal Conditioning, Digital Processing

European

XFEL

LLRF-Systems Channel Performance

- Spectral purity : (non-IQ Sampling scheme)
 - Mainly ADC limited

LLRF-Systems – Actuator Noise

TWS Structure (3GHz, f₁₂=500kHz BW) :

-> MOD/KLY @850V (20ppm), 10MW

VM+PA+KLY Stability (additive jitter):

 REGAE, XFEL TDS (PM, AM)
 1.

 1. KLY MOD
 1/f-noise
 : 13.79fs, ~0.049%, [min, 1MHz]

 2. Power Amplifier
 1/f-noise
 : 3.4fs, ~0.0039%, [min, 1MHz]

 3. Vector-Modulator
 1/f-noise
 : 2.9fs, ~0.0063%, [min, 1MHz]

 High-power chain :
 /

 -> 14.5fs, 0.049%, -165dBc/Hz

Beam timing Jitter :

Short Innovative Bunches and Accelerators at DESY

Gain Limitation :

 $g_{max} = \frac{1}{4t_D f_{12}}$ $\approx 2 \dots 5$

Latency Budget t _D	[ns]
RF-cables (5.5ns/m)	280
Field detection	80
LLRF Controller	300
High-power chain	100

\sim

In NC RF-Controls the stability is limited by the actuator chain (mainly modulator) and latency.

Courtesy of M.Hoffmann

LLRF-Systems – CW-Operation with an SRF-Cavity **ELBE**.

Absolut/Residual noise measurements :

- High precision out-of-loop measurement PN/AN using signal source analyzers
- Direct investigation of noise sources

DRESDEN

concept

Digital-Signal-Processing – In-loop Regulation Performance

RF field regulation

Repetitive disturbances

- Beam loading compensation
- Adaptive feed forward
- · Set-point optimization
- Fundamental mode filters
- Loop gain/phase correction

Stochastic disturbances

- MIMO controller
- Gain scheduling
- Drift compensation
- Intra-train beam based FB

Limitations and security thresholds

- Limiters on all control tables
- Final output limiter
- Individual cavity limiters
- Communication link error detection

Resonance control

- Slow motor tuners
- Fast Piezo tuners

Courtesy of C.Schmidt

Regulation performance:

- In-loop within the specs (0.01%, 0.01 deg)
- Out-of-loop using BAMs ~25fs

FLASH

Long-term Stability – Depends on Temperature and Humidity

Why is this important ? -> Robust machine operation

Distributed down converter (non-IQ-sampling scheme)

- Distortions are in the order of pico-seconds.
- Long-term stability depends on temperature and <u>strongly</u> on humidity. (Water penetrates slowly into the PCB/cable dielectric)

No stabilization

(+/-) Fully rely on beam-based feedbacks

Passive stabilization

- (+) Simple method
- (--) Requires rack stabilization <0.2K_pp
- (--) Requires rf-packages with sealing

Reference tracking

Reference injection (2nd-tone)

Long-term Stability – Drift-Compensation-Module

Courtesy of J.Piekarski

FIL

 Reference injection : (only for pulsed machines)

Relative Phase Calibration

Absolute Amplitude Calibration :

Long-term Stability – DCM in Action

~

Humidity induced phase drifts dominates and compensated by using the injection reference.

Rule of thumb @ 1.3 GHz:

1% Humidity change ~ 0.1deg Phase change

Courtesy of T.Lamb

fs-Precision – Limitations

Commercial ADCs :

Limited ADC Performance:

ADCs become faster, but no improvement in NSD since 2007

ADC Parallelization (SRF):

Goal: 100 ADCs ("IF-Sampling" type) + internal averaging: <1nV/sqrt(Hz), 16-bit, ~150Msps, SNR >95dB, latency <100ns

-> OnChip -> Chip Industry

: Stability of power supplies

- -> in Standards -> LLRF Community
- High-power chain (NRF-pulsed):
- Modulator
- Power Amplifier : 1/f-noise & spurs,

Missing CW-diagnostic for internal stages

RF-Controls towards as-Precision

Towards as-Precision – Options (Field Detection)

• Options to increase the measurement resolution <100as (real time):

Increase the RF-power:

- PN, AN linear in RF-power
- Carrier Suppression Interferometer
- High level mixer

Reduce the noise floor:

ADC/Channel parallelization, ~\sqrt(N)
 Time correlation (no real time)

Correlation techniques

Reduce the cavity bandwidth:

- Use >16-bit ADCs with better NSD (higher latency, SAR, Sigma-Delta)

High-Q_L Cavity Operation – CW Operation

- Increasing the cavity external quality factor:
 - (+) Less power required to achieve same gradient
 - (+) Reduced effective noise bandwidth
 - (--) More sensitive to microphonics

- Suppress microphonics:
- Apply <u>A</u>ctive <u>N</u>oise <u>C</u>ancellation to notch measured frequencies
- Suppression > 20 dB can be achieved

"FPGA-Based RF and Piezo controllers for SRF Cavities in CW Mode", R. Rybaniec et al. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 6, JUNE 2017

Results for high Q_L, high gradient, vector-sum :

Towards as-Precision – LLRF Component Requirements

SRF-Cavity (1.3GHz, Q_L 3·10⁶, BW 200Hz) :

LLRF Component Requirements :

Master reference (MO) : <-170dBc/Hz Actuator chain (ACT) : <-140dBc/Hz Field detectors (DWC) : <-175dBc/Hz (-150dBc/Hz)

Towards as-Precision – Carrier Suppression-Interferometer

Carrier-Suppression-Interferometer Prototype :

- (+) No carrier -> no 1/f-noise from LNA, DUT noise pass the system(+) PN, AN scales with RF-power
- (--) Needs a carrier tracking for destructive interference

Poster THPRB021 Uros Mavric

Challenges for <100as:

- Tunable phase shifters
- Tunable attenuators

Replacement:

- DUT = LLRF System

Towards as-Precision – Carrier Suppression Prototype

Short-term performance @ +17dBm, 1.3GHz (uncorrelated):

DUT Tests in PN, AN below 1fs :

Low-noise Receiver Concepts – Hybrids and Parallelization

 Down conversion hybrid options : (not needed for SRF, high-Q, 10Hz)

Example: CW-operation

Example: Broadband 360° Operation

DESY. | RF Controls Towards Femtosecond and Attosecond Precision | IPAC 2019, Melbourne, Australia

(+) No rf-power loss for splitting near baseband

Direct down-conversion (LO=REF) -> High-offset spectral information (+) No add. LO-noise contributions (>IF)

(+) IQ-Calibration removes IQ-90deg imperfections

Non-IQ IF down-conversion (IF>0) -> Low-offset spectral information

- (+) Avoids noise components from baseband
- (--) LO-contribution, but bandlimited (<IF)
- (+) Low IF minimize ADC CLK influence

https://www.rohde-schwarz.com/de/applikationen/1-mhz-bis-50-ghz-phasenrauschmessplatz-mit-direkter-abwaertsmischung-und-kreuzkorrelation-application-card_56279-231872.html

Summary and Outlook

- RF-Controls with spurious free short-term amplitude and phase detection below <10fs [1MHz BW] is available for the accelerator community in modern standards like MicroTCA.4 or proprietary systems.
- Having 10x better ADCs would be a big milestone for the community
- RF-controls with <100as field stability requires :</p>
 - - Hybrid field detectors
 - Brute force parallelization, preferable in standards
 - NRF: Low latency hybrids
 - High-power chain stabilization loops
 - High-power chains, RF-amplifiers below <1fs (better 1/f-noise, no spurs)

Thanks for your attention!