Paper |
Title |
Page |
MOYPLM3 |
Progress with the High Luminosity LHC Project at CERN |
17 |
|
- L. Rossi, O.S. Brüning
CERN, Geneva, Switzerland
|
|
|
The High Luminosity LHC (HL-LHC) project aims at upgrading the LHC by increasing the peak luminosity by a factor five, to allow to collect 3000 fb-1 for ATLAS and CMS experiments, each, which is ten times more than what is foreseen in the LHC. The upgrade is based on multiple factors. One factor is doubling the beam current, also thanks to the injector upgrade (LIU) project, and another one is operation in levelling mode. The most critical upgrade is the deploying of a stronger inner quadrupole triplet in the low-beta insertions with more than twice-larger aperture w.r.t. present LHC triplet, thanks to the use of Nb3Sn superconductor, a world first for accelerators, with almost 12 T peak field in the coils. The novel concept of ATS optics allows to utilise the increased aperture efficiently by generating β* values 3 to 4 times below the nominal values of the LHC. We will make use of compact crab cavities for hadrons (also a novelty in accelerators) to allow almost head-on collisions despite the larger crossing angle. We are developing new collimator insertions in the dispersion suppressor region to handle the losses in the cold part of the machine (the beam halo stores 30 MJ) thanks to the use of a few 11 T dipoles based on Nb3Sn technology. We also aim at reducing drastically the impedance contribution of collimators by utilizing new materials and coating techniques. Many other technologies are developed for HL-LHC like new SC links of 100 kA: HL-LHC is critical as a technology turning point for HEP colliders as it is for Physics reach. The technologies developed for HL-LHC, namely (but not only) the high field superconducting magnets, are critical for the post-LHC hadron collider, like a High Energy LHC or the 100 km Future Circular Collider
|
|
|
Slides MOYPLM3 [21.679 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOYPLM3
|
|
About • |
paper received ※ 19 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPGW008 |
PERLE: A High Power Energy Recovery Facility |
1396 |
|
- W. Kaabi, I. Chaikovska, A. Stocchi, C. Vallerand
LAL, Orsay, France
- D. Angal-Kalinin, J.W. McKenzie, B.L. Militsyn, P.H. Williams
STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
- S.A. Bogacz, A. Hutton, F. Marhauser, R.A. Rimmer, C. Tennant
JLab, Newport News, Virginia, USA
- S. Bousson, D. Longuevergne, G. Olivier, G. Olry
IPN, Orsay, France
- O.S. Brüning, R. Calaga, L. Dassa, F. Gerigk, E. Jensen, P.A. Thonet
CERN, Geneva, Switzerland
- B. Hounsell, M. Klein, C.P. Welsch
The University of Liverpool, Liverpool, United Kingdom
- E.B. Levichev, Yu.A. Pupkov
BINP SB RAS, Novosibirsk, Russia
|
|
|
PERLE is a proposed high power Energy Recovery Linac, designed on multi-turn configuration, based on SRF technology, to be hosted at Orsay-France in a col-laborative effort between local laboratories: LAL and IPNO, together with an international collaboration involv-ing today: CERN, JLAB, STFC ASTeC Daresbury, Liverpool University and BINP Novosibirsk. PERLE will be a unique leading edge facility designed to push advances in accelerator technology, to provide intense and highly flexible test beams for component development. In its final configuration, PERLE provides a 500 MeV elec-tron beam using high current (20 mA) acceleration during three passes through 801.6 MHz cavities. This presenta-tion outlines the technological choices, the lattice design and the main component descriptions.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW008
|
|
About • |
paper received ※ 19 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEYPLS1 |
Building the Impedance Model of a Real Machine |
2249 |
|
- B. Salvant, D. Amorim, S.A. Antipov, S. Arsenyev, M.S. Beck, N. Biancacci, O.S. Brüning, J.V. Campelo, E. Carideo, F. Caspers, A. Farricker, A. Grudiev, T. Kaltenbacher, E. Koukovini-Platia, P. Kramer, A. Lasheen, M. Migliorati, N. Mounet, E. Métral, N. Nasr Esfahani, S. Persichelli, B.K. Popovic, T.L. Rijoff, G. Rumolo, E.N. Shaposhnikova, V.G. Vaccaro, C. Vollinger, N. Wang, C. Zannini, B. Zotter
CERN, Meyrin, Switzerland
- D. Amorim
Grenoble-INP Phelma, Grenoble, France
- T. Dalascu
EPFL, Lausanne, Switzerland
- M. Migliorati
Sapienza University of Rome, Rome, Italy
- R. Nagaoka
SOLEIL, Gif-sur-Yvette, France
- V.V. Smaluk
BNL, Upton, Long Island, New York, USA
- B. Spataro
INFN/LNF, Frascati, Italy
- N. Wang
IHEP, Beijing, People’s Republic of China
- S.M. White
ESRF, Grenoble, France
|
|
|
A reliable impedance model of a particle accelerator can be built by combining the beam coupling impedances of all the components. This is a necessary step to be able to evaluate the machine performance limitations, identify the main contributors in case an impedance reduction is required, and study the interaction with other mechanisms such as optics nonlinearities, transverse damper, noise, space charge, electron cloud, beam-beam (in a collider). The main phases to create a realistic impedance model, and verify it experimentally, will be reviewed, highlighting the main challenges. Some examples will be presented revealing the levels of precision of machine impedance models that have been achieved.
|
|
|
Slides WEYPLS1 [5.648 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-WEYPLS1
|
|
About • |
paper received ※ 10 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|