

Progress on the High Luminosity LHC

Lucio Rossi – CERN HL-LHC Project Leader Oliver Brüning – CERN deputy Project Leader

Plenary Talk # MOYPLM3 IPAC'19 - Melbourne, 20 May 2019

CONTENT

- LHC present performance and next Run
- HL-LHC
 - Why, scope and challenges
 - Beam Physics
 - LIU (LHC Injector Upgrade project)
- HL-LHC Status
 - Magnets
 - CCs
 - Collimators & other systems
 - Civil engineering
- Budget, time plan

HILUMI

30 papers related to High Luminosity LHC @IPAC'19 Wednesday orals:

- B. Salvant et al. (impedance model)-invited
- J. Jowett et a. (heavy ion run)
- G. Sterbini et al. (Long Range beam-beam compensating wires test)

Thursday invited oral:

- M. Meddahi et al. (LHC Injector Upgrade)

LHC performance at a glance: Energy

LHC performance at a glance: Energy

LHC Performance: Luminosity

Limited by the heat deposition in the IT Quadrupole in Nb-Ti: forecast 1.7- 2 L_0 ($L_0 = 10^{34}$ cm⁻²s⁻¹, LHC nominal design lumi)

Typical figure for Run 2. this means 70% machine (including injectors) availability and about 60% efficiency!

LHC Performance: Luminosity

Typical figure for Run 2. this means 70% machine (including injectors) availability and about 60% efficiency!

Performance: Integrated Luminosity

-LHC PROJ

F. Bordry, Director of Accelerators & Technology, CERN

Period	Int. Luminosity [fb ⁻¹]
Run 1	29.2
Run 2: 2015	4.2
Run 2: 2016	39.7
Run 2: 2017	50.2
Run 2: 2018	66.0
Total Run1 + Run 2	189.3

Original goal of Run1+Run2 = 150 fb⁻¹: Δ = + 20%

Outlook to LHC Run 3 (2021-2023)

Run3 WG , S. Fartoukh, chair N. Karastathis

LIU beam intensity ramp up for HL-LHC: can be used in LHC Run3?

LHC I	njectors Upgrade	2021	2022	2023*	Comment	Pushing present LHC at the limit		
	# bunches	U	p to 2748 (BC	MS)		(using HL-LHC studies and early		
	$\epsilon_n [\mu m]$	1.3	1.3	1.3 → 1.55	Intensity Ramp Up	in LS2 · Levelling collimator		
	<i>N_b</i> [10 ¹¹ p]	0 →1.4	1.4 →1.8	1.8 → 2.1	Max bunch population at the end of each year	low-Z and DS, TDIS)		

Approaching cryogenic limitations different heat load emerged in Run2 is to be understood

Goal Rune 3: L_{int} 160 fb⁻¹ with margins

F. Bordry, Director of Accelerators & Technology, CERN

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

7

HL-LHC PROJEC

Technical limitation on the istantaneous lumi:

1. **Collider** (cryolimit in the triplet region) at 2×10^{34} cm⁻²s⁻¹ twice the nominal design luminosity)

2. **Experiments** (pile up in the detectors). Designed for PU 40 they are actually dealing with 60 (average)!

HL-LHC PROJE

Technical limitation on the istantaneous lumi:

1. **Collider** (cryolimit in the triplet region) at 2×10³⁴ cm⁻²s⁻¹ twice the nominal design luminosity)

2. **Experiments** (pile up in the detectors). Designed for PU 40 they are actually dealing with 60 (average)!

Technical limitation on integrated lumi: 1. **Collider** (radiation damage to the IT magnets – correctors and guadrupoles)

2. **Experiments** (radiation damage in the Inner Tracker)

Why not just keep going with cons?

HILUM

Why not just keep going with cons?

HILUM

Why not just keep going with cons?

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

8

From EC-FP7 HiLumi LHC Design Study application of 2010

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets: A peak luminosity of $L_{peak} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ with levelling, allowing: An integrated luminosity of 250 fb⁻¹ per year, enabling the goal of $L_{int} = 3000 \text{ fb}^{-1}$ twelve years after the upgrade.

This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

From EC-FP7 HiLumi LHC Design Study application of 2010

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

A peak luminosity of $L_{peak} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ with levelling, allowing: An integrated luminosity of 250 fb⁻¹ per year, enabling the goal of $L_{int} = 3000 \text{ fb}^{-1}$ twelve years after the upgrade. This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

> Ultimate performance established 2015-2016: with same hardware and same beam parameters: use of engineering margins: $L_{peak ult} \cong 7.5 \ 10^{34} \ cm^{-2}s^{-1} \ and \ Ultimate Integrated \ L_{int ult} \sim 4000 \ fb^{-1}$ LHC should not be the limit, would Physics require more...

HILUMI

From EC-FP7 HiLumi LHC Design Study application of 2010

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets: A peak luminosity of $L_{peak} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ with levelling, allowing: An integrated luminosity of 250 fb⁻¹ per year, enabling the goal of $L_{int} = 3000 \text{ fb}^{-1}$ twelve years after the upgrade. This luminosity is more than ten times the luminosity reach of the

first 10 years of the LHC lifetime.

Ultimate performance established 2015-2016: with same hardware and same beam parameters: use of engineering margins.
L_{peak ult} ≅ 7.5 10³⁴ cm⁻²s⁻¹ and Ultimate Integrated L_{int ult} ~ 4000 fb⁻¹ LHC should not be the limit, would Physics require more...

From EC-FP7 HiLumi LHC Design Study application of 2010

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets: A peak luminosity of $L_{peak} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ with levelling, allowing: An integrated luminosity of 250 fb⁻¹ per year, enabling the goal of $L_{int} = 3000 \text{ fb}^{-1}$ twelve years after the upgrade.

This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

Ultimate performance established 2015-2016: with same hardware and same beam parameters: use of engineering margins:

 $L_{peak ult} \cong 7.5 \ 10^{34} \ cm^{-2} s^{-1}$ and Ultimate Integrated $L_{int ult} \sim 4000 \ fb^{-1}$

LHC should not be the limit, would Experiment are designing for this goal.

HILUMI

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne

We need to be compatible with it!

HL-LHC performance (ultimate L_{lev} from 2032)

IL-LHC PROJE

$$L = \gamma \frac{f_{rev} n_b N_b^2}{4\pi\varepsilon_n \beta^*} R$$

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

11

$$L = \gamma \frac{f_{rev} n_b N_b^2}{4\pi\varepsilon_n \beta^*} R$$

energy

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

11

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

11

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

11

Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)
Beam energy in collision [TeV]	7	7
N _b	1.15E+11	2.2E+11
n_b^{12}	2808	2760
Beam current [A]	0.58	1.1
Half Crossing angle [μrad]	142.5	250
Minimum β^* [m]	0.55	0.15
ε _n [μm]	3.75	2.50
Total loss factor R0 without crab-cavity	0.836	0.342
Total loss factor R1 with crab-cavity	-	0.716
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]	-	1.70E+35
Levelled Luminosity [cm ⁻² s ⁻¹]	-	5.0E+34 ⁴
Events / crossing (with leveling and crab-cavities for HL-LHC) ⁷	27	131
Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.28
Leveling time [h] (assuming no emittance growth) ⁷	-	7.3

Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)
Beam energy in collision [TeV]	7	7
N _b	1.15E+11	2.2E+11
n_b^{12}	2808	2760
Beam current [A]	0.58	1.1
Half Crossing angle [µrad]	142.5	250
Minimum β^* [m]	0.55	0.15
ε _n [μm]	3.75	2.50
Total loss factor R0 without crab-cavity	0.836	0.342
Total loss factor R1 with crab-cavity	-	0.716
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]	-	1.70E+35
Levelled Luminosity [cm ⁻² s ⁻¹]	-	5.0E+34 ⁴
Events / crossing (with leveling and crab-cavities for HL-LHC) ⁷	27	131
Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.28
Leveling time [h] (assuming no emittance growth) ⁷	-	7.3

Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)
Beam energy in collision [TeV]	7	7
N _b	1.15E+11	2.2E+11
n _b ¹²	2808	2760
Beam current [A]	0.58	1.1
Half Crossing angle [µrad]	142.5	250
Minimum β^* [m]	0.55	0.15
ε _n [μm]	3.75	2.50
Total loss factor R0 without crab-cavity	0.836	0.342
Total loss factor R1 with crab-cavity	-	0.716
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]	-	1.70E+35
Levelled Luminosity [cm ⁻² s ⁻¹]	-	5.0E+34 ⁴
Events / crossing (with leveling and crab-cavities for HL-LHC) ⁷	27	131
Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.28
Leveling time [h] (assuming no emittance growth) ⁷	-	7.3

Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)
Beam energy in collision [TeV]	7	7
N _b	1.15E+11	2.2E+11
n _b ¹²	2808	2760
Beam current [A]	0.58	1.1
Half Crossing angle [µrad]	142.5	250
Minimum β^* [m]	0.55	0.15
ε _n [μm]	3.75	2.50
Total loss factor R0 without crab-cavity	0.836	0.342
Total loss factor R1 with crab-cavity	-	0.716
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]	-	1.70E+35
Levelled Luminosity [cm ⁻² s ⁻¹]	-	5.0E+34 ⁴
Events / crossing (with leveling and crab-cavities for HL-LHC) ⁷	27	131
Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.28
Leveling time [h] (assuming no emittance growth) ⁷	-	7.3

Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)	
Beam energy in collision [TeV]	7	7	
N _b	1.15E+11	2.2E+11	
n _b ¹²	2808	2760	
Beam current [A]	0.58	1.1	
Half Crossing angle [µrad]	142.5	250	
Minimum β^* [m]	0.55	0.15	
ε _n [μm]	3.75	2.50	
Total loss factor R0 without crab-cavity	0.836	0.342	
Total loss factor R1 with crab-cavity		0.716	
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]	-	1.70E+35	
Levelled Luminosity [cm ⁻² s ⁻¹]	-	5.0E+34 ⁴	
Events / crossing (with leveling and crab-cavities for HL-LHC) ⁷	27	131	
Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.28	
Leveling time [h] (assuming no emittance growth) ⁷	-	7.3	

Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)
Beam energy in collision [TeV]	7	7
N _b	1.15E+11	2.2E+11
n _b ¹²	2808	2760
Beam current [A]	0.58	1.1
Half Crossing angle [µrad]	142.5	250
Minimum β^* [m]	0.55	0.15
ε _n [μm]	3.75	2.50
Total loss factor R0 without crab-cavity	0.836	0.342
Total loss factor R1 with crab-cavity		0.716
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]	-	1.70E+35
Levelled Luminosity [cm ⁻² s ⁻¹]	-	5.0E+34 ⁴
Events / crossing (with leveling and crab-cavities for HL-LHC) ⁷	27	131
Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.28
Leveling time [h] (assuming no emittance growth) ⁷	-	7.3

Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)
Beam energy in collision [TeV]	7	7
N _b	1.15E+11	2.2E+11
n _b ¹²	2808	2760
Beam current [A]	0.58	1.1
Half Crossing angle [µrad]	142.5	250
Minimum β^* [m]	0.55	0.15
ε _n [μm]	3.75	2.50
Total loss factor R0 without crab-cavity	0.836	0.342
Total loss factor R1 with crab-cavity		0.716
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]	-	1.70E+35
Levelled Luminosity [cm ⁻² s ⁻¹]	-	5.0E+34 ⁴
Events / crossing (with leveling and crab-cavities for HL-LHC) ⁷	27	131
Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.28
Leveling time [h] (assuming no emittance growth) ⁷	-	7.3

Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)
Beam energy in collision [TeV]	7	7
N _b	1.15E+11	, 2.2E+11
n_b^{12}	2808	2760
Beam current [A]	0.58	1.1
Half Crossing angle [μrad]	142.5	250
Minimum β^* [m]	0.55	0.15
ε _n [μm]	3.75	2.50
Total loss factor R0 without crab-cavity	0.836	0.342
Total loss factor R1 with crab-cavity		0.716
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]	-	1.70E+35
Levelled Luminosity [cm ⁻² s ⁻¹]	-	5.0E+34 ⁴
Events / crossing (with leveling and crab-cavities for HL-LHC) ⁷	27	131
Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.28
Leveling time [h] (assuming no emittance growth) ⁷	-	7.3

Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)		HL-LHC 8b+4e ¹⁰
Beam energy in collision [TeV]	7	7	,	7
N _b	1.15E+11	2.2E+11		2.2E+11
n _b ¹²	2808	2760	;	1972
Beam current [A]	0.58	1.1		0.79
Half Crossing angle [µrad]	142.5	250		235 ⁹
Minimum β^* [m]	0.55	0.15	N	0.15
ε _n [μm]	3.75	2.50	Back-up	2.20
Total loss factor R0 without crab-cavity	0.836	0.342	for e-cloud	0.342
Total loss factor R1 with crab-cavity)	0.716	,	0.749
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]	-	1.70E+35	i	1.44E+35
Levelled Luminosity [cm ⁻² s ⁻¹]	-	→ 5.0E+34 ⁴		3.82E+34
Events / crossing (with leveling and crab-cavities for HL-LHC) ⁷	27	131		140
Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.28)	1.3
Leveling time [h] (assuming no emittance growth) ⁷	-	7.3		7.1

Pushing at the maximum the parameters of HL-LHC we would start the fill at $L = 17x10^{34}$ with 400 events/crossing.

Pile up

HILUMI HI-LHC PROJECT Pushing at the maximum the parameters of HL-LHC we would start the fill at $L = 17x10^{34}$ with 400 events/crossing.

Pile up

Pushing at the maximum the parameters of HL-LHC we would start the fill at $L = 17x10^{34}$ with 400 events/crossing.

LIU (Intensity) and Levelling mode

-LHC PROJE

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

LIU (Intensity) and Levelling mode

-LHC PROJ

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

LIU installation under way:2019-2020

SPS upgrade

L-LHC PR

- Main RF system upgrade (new solid state power plants 2 x 1.6 MW)
- Impedance mitigation to improve beam stability
- More robust beam dump and protection devices

Courtesy M. Meddahi and G. Rumolo, CERN

PSB upgrade

- H⁻ charge exchange injection at 160 MeV → improved beam brightness (weaker space charge forces)
- Energy : 1.4 GeV \rightarrow 2 GeV
 - New main power supply
 - New RF systems

Linac 4, has been built to take over.

LHC Injectors Upgrade

- Higher energy 160 MeV
- Acceleration of H⁻ ions (charge exchange H⁻→p⁺ in the PSB)

Construction completed in 2017

- Extensively tested in 2017-2018
- Ongoing work in LS2 to connect it to the rest of the chain

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne

LHC / HL-LHC Plan

HL-LHC CIVIL ENGINEER:

DEFINITION **EXCAVATION / BUILDINGS**

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

LHC / HL-LHC Plan

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne. 16

ATS: new operation mode for hadron colliders Extending matching section to 13 km of arcs!

Overcoming LHC chromatic and matching limitations of $\beta^* = 25-30$ cm. Around each P1 and P5 6.5 km machine become a giant matching section and beam size can be made as small as 5 µm.

Improving the data quality

Levelling helps to limit total pile up: μ_{ave} = 140 (ultimate: μ_{ave} = 200). Experiments ask to reduce the pile up linear density (number of events/lenght) and need to introduce time stamping \Rightarrow carefully control and variation of:

- β^* (beam size at collision), main levelling knob
- Bunch tilt (Crab cavities)
- Crossing angle
- Longitudinal bunch length

Due to many advances in beam bynamics understanding:

- ATS and beam optics controls
- Beam dynamics aperture
- Beam-beam (LR)
- Impedance model
- Noise model
- RF low level

HILUM

	WP1 Project I	Vanagement	
WP2 Accelerator Physics & Performance			WP10 Energy Deposition & R2E
WP3 IR Magnets			WP11 11 T Dipole
WP4 Crab Cavities & RF	$ \setminus $		WP12 Vacuum & Beam Screen
WP5 Collimation	\mathbf{M}		WP13 Beam Instrumentation
WP6A Cold Powering	Hilu	Im	WP14 Beam Transfer & Kickers
WP6B Warm Powering	HL-LHU	PROJECT	WP15 Integration & (De-)Installation
WP7 Machine Protection	$\boldsymbol{\prime}\boldsymbol{\prime}$	\mathbb{N}	WP16 IT String & Commissioning
WP8 Collider-Experiment Interface		Infrast	WP17 tructure, Logistics & Civil Engineering
WP9 Cryogenics			WP18 Controls Technologies

LR2 Cecile can you add a New banner with the red circle of WP18? Lucio Rossi, 22/03/2018

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

Complete 11.2 T cryo-assembly replacing a 15 m 8.3 T LHC dipole in 2020

Complete 11.2 T cryo-assembly replacing a 15 m 8.3 T LHC dipole in 2020

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

11 T in full swing production: LS2 installation in 2020! great care given the stress sensitivity of Nb₃Sn

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

IT quadrupole. Increase in field but also in size wrt LHC. Very relevant also for FCC magnets

Test results IT QUAD

HiLumi WP3: G. Ambrosio (FNAL), P. Ferracin , E. Todesco (CERN) et al.

1st short (1 m long) model magnet: 2 coils CERN - 2 Coil US-LARP; test in Fermilab, excellent results and memory

LHC PROJE

1st long (4 m long) prototype magnet by US-LARP-AUP; test in Fermilab, very good start but short circuit developed. Now repaired and under **re-test next week.**

Test results IT QUAD

HiLumi WP3: G. Ambrosio (FNAL), P. Ferracin , E. Todesco (CERN) et al.

1st short (1 m long) model magnet: 2 coils CERN - 2 Coil US-LARP; test in Fermilab, excellent results and memory

-LHC PROJE

1st long (4 m long) prototype magnet by US-LARP-AUP; test in Fermilab, very good start but short circuit developed. Now repaired and under **re-test next week**.

Further results IT quadrupoles on short models

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

Further results IT quadrupoles on short models

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

e.

Nb3Sn High Field Collider Magnets

- HiLumi needs by 2024 about 40 Nb₃Sn large magnets:
 - 4+2 11 T dipoles L=5.5m
 - 8+2 (7.2 m long) and 16+4 (4.2m long) IT quadrupole of 11.5 T
- We have learnt how to deal wiht this difficult technology (700 °C heat treatment, vac.impregnation, performance sensible to stress)
- However we found recently electrical and structural problems on the first two long prototypes (partly seen also on 11 T).
 - Structural problems on IT Quads understood and solved: traced to too small margin (in shells) that could led to failure for fatigue effect.
 - Electrical problem (QH insulation): 2 solutions identified, one under test on the 11 T dipole.
- Industrialization of long magnets is being more difficult than anticipated! Difference from LHC NbTi.

Construction of the 1st and 2nd long (7.5 m!) IT Quad in CERN; in USA winding 4th long magnet

Nb-Ti new technologies: CCT and SF magnets

Crab Cavity

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

Crab Cavity

The DQW CC in cryomodule for the SPS test

The DQW CC in cryomodule for the SPS test

The DQW CC in cryomodule for the SPS test

Crab Cavities: progress in design, construction and test infrastructure

New SRF test stand with beam in SPS for HiLumi LHC Crab Cavities

RF phase scan w.r.t the beam phase with cavity 1: principle validated! Transparency of CC to beam demonstrated! MDs very successful (with voltage limitation).

Rossi - HL-LHC progress - IPAC'19 - Melbourne.

33

Crab Cavities: progress in design, construction and test infrastructure

New SRF test stand with beam in SPS for HiLumi LHC Crab Cavities

Industrial contracts : launched both from CERN and US-HL-AUP

RF phase scan w.r.t the beam phase with cavity 1: principle validated! Transparency of CC to beam demonstrated! MDs very successful (with voltage limitation).

Crab Cavities: progress in design, construction and test infrastructure

1.0

^{0.8} ک

0.0

0.4 - 0.2

New SRF test stand with beam in SPS for HiLumi LHC Crab Cavities

-1.0

-0.5

0.0

t [ns]

0.5

1.0

-1.0

-0.5

t [ns]

0.5

1.0

Transparency of CC to beam demonstrated! MDs very successful (with voltage limitation).

New CC collaborations

Rossi - HL-LHC progress - IPAC'19 - Melbourne.

Science & Technology Facilities Council

RIUMF

Collimators low-Z : special MoGR Mo-coated upgrade partly in 2020 and then in 2025

Samples of MoGr (Molybdenum-Graphite) from producer (CERN EN/MME/STI)

HL WP5: S. Redaelli, R. Bruce, S. Gilardoni, M. Calviani, A. Bertrelli, R. Carra et al.

Cold-Warm-Cold bypass to host Collimators in the DS region

HL WP5: S. Redaelli,

F. Savary et al.

New injection protection absorber

In total some 40 new absorber and collimators devices in LS2 (2020) and LS3 (2025)

Test on crystal collimation (for baseline)

<u>Scope</u>: further improvement of ion cleaning after 2016 re-baselining. **Studying if, for ions**, this can be an "adiabatic" upgrade of the IR7 system. 2017: **improved by up to x60 collimation cleaning** of Xe beams!

Courtesy EN/SMM

Courtesy UA9 collaboration/PNPI

HL WP5: S. Redaelli, S. Gilardoni, M. Calviani al.

4 mm = 50 μrad, or 10 x 15m long LHC dipoles or 300 T at 7 TeV

Two goniometers installed on B1 in LS2; two more on B2 in 2017, upgraded in 2018. **4 operational crystals for collimation**.

E-lens in HL-LHC for halo control - 30 MJ in the halo

It would allow controlling actively the halo, through a hollow electron beam (overlapped over three meters to the proton/ion beams) that selectively excites halo particles.

HL WP5: S. Redaelli, D. Perini, A. Rossi et al.

Cathode

Electron gun

Design nearly complete. Surpassed target e-beam current of 5A, now final cathode design (smaller) under test at FNAL.

Ready to built it, heading to integrated into the baseline.

High Luminosity LHC IT region

High Luminosity LHC – Matching section

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

38

Important upgrade of Technical infrastructure

Hilumi Civil Engineer: 2 large shafts; 1 km of new underground; 20 new buildings;

L.Rossi - HL-LHC progress - IPAC'19 - Melbourne.

40

Hilumi Civil Engineer: 2 large shafts; 1 km of new underground; 20 new buildings;

Contract T117 – JVMM (LHC-P1)

Hilumi Civil Engineer: 2 large shafts; 1 km of new underground; 20 new buildings;

Contract T117 – JVMM (LHC-P1)

Contract T118 - CIB (LHC-P5)

Budget, expenditures & Time Plan

Budget, expenditures & Time Plan

Budget, expenditures & Time Plan

LHC energy exploitation (input from O. Bruning and task force)

- **14 TeV** operation (nominal design)
 - Tests before YETS 2016/2017 revealed problem with diode box that prevented termination of the proposed tests → LS2 consolidation of diode boxes.
 - The test in sector 1-2 for validating magnet performance at 7TeV prior to LS2 showed that we may need 1 quench/magnet: ≥ 1000 quenches, 2-3 months of intense quench campaign. Only question of time: foreseen in Run 3 (or Run 4)
- **15 TeV** (ultimate energy, dipoles at 93% of intrinsic limit):
 - Not impossible but very unlikely due to large time overhead (long quench campaign; and ~400 magnets never trained to ultimate): trade-off between energy gain and luminosity
- Beyond ultimate energy sunstuting 1/3 of main dipole with a 11 T dipole
 - ~16 TeV
 - Very unlikely: big change, big overheads of de and re-instlalation (2-3 y?) and very difficult operation. The cost is in the 2-3 BCHF range.
 - The 11 T HiLumi dipole not optimized for cost and in series with LHC dipoles: big constraints

