Paper | Title | Page |
---|---|---|
MOPIK122 | The Beam Optics of the FFAG Cell of the CBETA ERL Accelerator | 820 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The CBETA project[*] is a prototype electron accelerator for the proposed eRHIC project[**]. The electron accelerator is based on the Energy Recovery Linac (ERL) and the Fixed Field Alternating Gradient (FFAG) principles. The FFAG arcs and the straight section of the accelerator are comprised of one focusing and one defocusing quadrupoles which are designed as Halbach-type permanent dipole magnets with quadrupoles component[***]. We will present the beam optics of the FFAG cell which is based on 3D field maps derived with the use of the OPERA computer code[****]. We will also present the electromagnetic design of the corrector magnets of the cell. * http://arxiv.org/abs/1504.00588 ** http://arxiv.org/ftp/arxiv/papers/1409/1409.1633.pdf *** K. Halbach, Nucl. Instrum. Meth. 169 (1980) pp. 1-10 **** http://www.scientificcomputing.com |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK122 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOCB3 | CBETA - Cornell University Brookhaven National Laboratory Electron Energy Recovery Test Accelerator | 1285 |
|
||
Funding: New York State Energy Research and Development Authority (NYSERDA) Cornell's Lab of Accelerator-based Sciences and Education (CLASSE) and the Collider Accelerator Department (BNL-CAD) are developing the first SRF multi-turn energy recovery linac with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack. The existing injector and superconducting linac at Cornell University are installed together with a single NS-FFAG arcs and straight section at the opposite side of the the linac to form an Electron Energy Recovery (ERL) system. Electron beam from the 6 MeV injector is injected into the 36 MeV superconducting linac, and accelerated by four successive passes: from 42 MeV up to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase. Energy is recovered and reduced to the initial value of 6 MeV with 4 additional passes. There are many novelties: a single NS-FFAG structure, made of permanent magnets, brings electrons with four different energies back to the linac. A new adiabatic NS-FFAG arc-to-straight section merges 4 separated orbits into a single orbit in the straight section. |
||
![]() |
Slides TUOCB3 [41.888 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOCB3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPVA047 | IBS Simulation with Different RF Configurations in RHIC | 2178 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. This report focuses on three dimensional emittance growth of polarized proton beam due to Intra-Beam Scattering (IBS) at RHIC. Simulations are presented which give guidance on the configuration of the RF systems to mitigate IBS-induced emittance growth. In addition, simulated growth rates are compared with measured emittance evolution at injection, which shows better agreement in longitudinal than transverse dimension. The results in this report will help us better understand the emittance evolution for current RHIC operations and for future operations (eRHIC). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA047 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPVA050 | RHIC Polarized Proton Operation for 2017 | 2188 |
|
||
Funding: Work supported by the US Department of Energy under contract number DE-SC0012704 The 2017 operation of the Relativistic Heavy Ion Collider (RHIC) involved the running of only a single experiment at STAR with PHENIX offline in the process of the upgrade to sPHENIX. For this run there were several notable changes to machine operations. These included, transverse polarization, luminosity leveling, a new approach to machine protection and the development of new store and ramped lattices. The new 255 GeV store lattice was designed to both accommodate the necessary phase advance between the e-lens and IP8 for testing and to maximize dynamic aperture. The new lattices on the ramp were designed to maximize polarization transmission during the three strong intrinsic spin resonances crossings. Finally we are also commissioning new 9 MHz RF cavities during this run. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA050 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPIK047 | Frequency Choice Studies of eRHIC Crab Cavity | 3028 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Crab crossing scheme is essential collision scheme to achieve high luminosity for the future electron-ion collider (EIC). Since the ion beam is long when cooling is not present, the nonlinear dependence of the crabbing kick may present a challenge to the beam dynamics of the ion beam, hence a impact to the luminosity lifetime. In this paper, we present the initial result of the weak-strong and strong-strong beam-beam tracking with the crab crossing scheme. The result provides beam dynamics guidance in choosing the proper frequency the crab cavity for the future EIC. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK047 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPIK049 | Overview of the eRHIC Ring-Ring Design | 3035 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The ring-ring electron-ion collider eRHIC aims at an electron-ion luminosity in the range from 1032 to 1033cm-2sec-1 over a center-of-mass energy range from 20 to 140GeV. To minimize the technical risk the design is based on existing technologies and beam parameters that have already been achieved routinely in hadron-hadron collisions at RHIC, and in electron-positron collisions elsewhere. This design has evolved considerably over the last two years, and a high level of maturity has been achieved. We will present the latest design status and give an overview of studies towards evaluating the feasibility. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK049 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB090 | Algorithm to Calculate Off-Plane Magnetic Field From an on-Plane Field Map | 3928 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. We present an algorithm to calculate the off-plane components of the magnetic field from the on-plane components of the magnetic field which are measured on a grid of the plane. The algorithm, which is a general one and it is not restricted on a mid-plane symmetry, is based on the Taylor series expansion of the magnetic field components in terms of the normal to the plane location. The coefficients of the Taylor series expansion are expressed in terms of the on-plane derivatives of the field components which are generated by the measured magnetic field components on the grid of the plane. The algorithm is use in the RATRACE computer code[*] and has been used[**] on a dipole magnet with median plane symmetry. * S.B. Kowalski and H.A. Enge The Ion-Optical Program Raytrace NIM A258 (1987) 407 ** N. Tsoupas et. al. Effects of Dipole Magnet Inhomogeneity on the Beam Ellipsoid NIM A258 (1987) 421-425 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB090 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |