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Abstract
We present an algorithm to calculate the off-plane com-

ponents of the magnetic field from the on-plane components
of the magnetic field which are measured on a grid of the
plane. The algorithm is based on the Taylor series expansion
of the magnetic field components in terms of the normal
to the plane location. The coefficients of the Taylor series
expansion are expressed in terms of the on-plane derivatives
of the field components. We describe three different ways
in which these in-plane derivatives have been computed in
existing codes.

INTRODUCTION
With the advent of the technology to perform more accu-

rate magnetic field measurements the beam optics calcula-
tions very often rely on the measurements of the magnetic
fields of a single magnet or many magnets over a 3D or a 2D
grid. If the measurements of the magnetic fields are made on
a 3D grid the field map is used to calculate the beam optics
of the magnets by integrating the equation of motion in the
3D field map. However if the magnetic field measurements
are made on a plane grid, Maxwell’s equations have to be
used to calculate the magnetic field at any point in space.
In this technical note we develop an algorithm which pro-
vides the magnetic field at any given point in space from the
knowledge of the magnetic field on a plane. Fig. 1 shows the
grid points (intersection points of the red lines) on a plane
where the magnetic field components are measured experi-
mentally. No material exists in between the plane and the
point in space where the field is calculated. The algorithm
provides the values of the components of the magnetic field
at a distance y from the plane. Although most of the magnets
used in the applications of charged particle beam optics and
in particle accelerators have median plane symmetry, some
of the methods we describe are not constrained of midplane
symmetric fields, and the only requirement will be the exper-
imentally measured, or computed, field components of the
magnetic field at the grid points of the plane. The algorithm
is based on the Taylor series expansion of the magnetic field
at the point of interest in terms of the y coordinate which is
the distance of the point, the field is to be calculated, from
the plane. The coefficients of the Taylor series expansion
are ultimately expressed in terms of the values of the field
components at grid points.
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Figure 1: A schematic diagram of a grid on a plane. The
magnetic field components at any grid point on the plane
are measured. The algorithm calculates the magnetic field
components at any given point in space at a distance y from
the plane.

EXPANSION OUT OF THE MIDPLANE
We begin with the expansion of the magnetic field as a

power series in y:

Bi(x, y, z) =
∞∑
j=0

1
j!

Bi j(x, z)y j (1)

where i is the component of the magnetic field. Given
Bi(x, 0, z) = Bi0(x, z), we can compute the coefficients of
y j for j , 0 using Maxwell’s equations. It is useful to
distinguish between the midplane-symmetric fields, where
Bx(x, 0, z) = Bz(x, 0, z) = 0, and the midplane-asymmetric
fields, where By(x, 0, z) = 0. Of course the general case can
be a sum of these two cases.
Maxwell’s equations can be used to find the coefficients

Bi j for j > 1 using the fields in the midplane, Bi0. For the
midplane-symmetric case, up to the fourth power of y,

Bx1 = ∂xBy0 (2)

Bz1 = ∂zBy0 (3)

By2 = −(∂
2
x + ∂

2
z )By0 (4)

Bx3 = −(∂
3
x + ∂x∂

2
z )By0 (5)

Bz3 = −(∂
2
x∂z + ∂

3
z )By0 (6)

By4 = (∂
4
x + 2∂2

z ∂
2
z + ∂

4
z )By0 (7)
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where ∂x denotes the partial derivative with respect to x.
Note the absence of the derivatives ∂x∂z , ∂3

x∂z , and ∂x∂3
z ;

this will become important for subsequent simplifications.
For the midplane-asymmetric case,

By1 = −∂xBx0 − ∂zBz0 (8)

Bx2 = −∂
2
xBx0 − ∂x∂zBz0 (9)

Bz2 = −∂x∂zBx0 − ∂
2
z Bz0 (10)

By3 = (∂
3
x + ∂x∂

2
z )Bx0 + (∂

2
x∂z + ∂

3
z )Bz0 (11)

Bx4 = (∂
4
x + ∂

2
x∂

2
z )Bx0 + (∂

3
x∂z + ∂x∂

3
z )Bz0 (12)

Bz4 = (∂
3
x∂z + ∂x∂

3
z )Bx0 + (∂

2
x∂

2
z + ∂

4
z )Bz0 (13)

Thus, to approximate the magnetic field out of the midplane
to fourth order in y, we need derivatives of By up to fourth
order in the midplane, the order being the sum of the orders
in x and z.

POLYNOMIAL APPROXIMATION
We describe here the three methods that have been used

to compute the fields and their derivatives for this midplane
field expansion. They all rely on approximating the fields
locally as a polynomial:

Bi(x, 0, z) ≈
∑
j=0

∑
k=0

bi jk
j!k!
(x − x0)

j(z − z0)
k (14)

where the limits of the summation depend on the method
used. Taking derivatives of this function to obtain the ex-
pansion out of the midplane is straightforward.
The fields are assumed to be available at a set of grid

points. These grid points may be available as the result
of evaluting a known function for the midplane field (RAY-
TRACE [1–3]), at a set ofmeasured points [4], or from a com-
putation using a finite-element code. Thus, we end up with a
matrix equation relating Bi on grid points (x+ p∆x, z+q∆z)
to the coefficients:

Bi(x + p∆x, 0, z + q∆z) ≈
∑
j=0

∑
k=0

bi jk(∆x)j(∆z)k
pjqk

j!k!
(15)

This equation can either be solved for the bi jk exactly
(RAYTRACE [1–3]) or in the least squares sense ( [4],
ZGOUBI [5, 6]).
However we solve this, we will in the end compute a

matrix c jk
pq (rows ( j, k), columns (p, q)) such that

bi jk(∆x)j(∆z)k =
∑
pq

c jk
pqBi(x + p∆x, 0, z + q∆z) (16)

RAYTRACE [1–3]
RAYTRACE [1–3] evaluates the field in a grid centered

at the point where the field is to be evaluated; thus it needs a
field that can be evaluated at any point in the midplane. The
grid is the diamond pattern shown in Fig. 2. The coefficients
bi jk are the actual derivatives needed. Since there are only

Figure 2: The grid points RAYTRACE uses to evaluate the
derivatives for the out-of-plane field expansion.

13 points, it is not possible to uniquely find the 15 derivatives
needed for a general expansion out of the midplane, but since
only 12 derivatives are needed for a midplane-symmetric
field, it is possible for that case. We thus invert Eq. (15)
directly, adding by11 to make the matrix invertible.
Each row of the c matrix can be written as a grid that

overlays the evaluation points. Thus:

c00 :


0

0 0 0
0 0 1 0 0

0 0 0
0


(17)

c10 :
1
12


0

0 0 0
1 −8 0 8 −1

0 0 0
0


(18)

c20 :
1
12


0

0 0 0
−1 16 −30 16 −1

0 0 0
0


(19)

c30 :
1
2


0

0 0 0
−1 2 0 −2 1

0 0 0
0


(20)

c21 :
1
2


0

1 −2 1
0 0 0 0 0
−1 2 −1

0


(21)
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c40 :


0

0 0 0
1 −4 6 −4 1

0 0 0
0


(22)

c22 :


0

1 −2 1
0 −2 4 −2 0

1 −2 1
0


(23)

The rows are from 2 (top) to −2 (bottom), columns are −2
(left) to 2 (right); note the row ordering (designed to make
positive be to the top and right). The remaining partial
derivatives can be obtained by exchanging x and z, and
swapping rows and columns.

ZGOUBI [5, 6]

ZGOUBI [5, 6] assumes an underlying grid of points in
a 2-D plane. First, the grid point nearest the evaluation
point in question is determined. Then a 5 × 5 grid of points
centered at that point is used to solve Eq. (15) in the least
squares sense. The resulting coefficients are used in Eq. (14),
which is then differentiated to obtain the expansion out of
the midplane. The rows of c to obtain the coefficients using
this method are:

c00 :
1

1225


51 −99 96 −99 51
−99 −24 246 −24 −99
96 246 541 246 96
−99 −24 246 −24 −99
51 −99 96 −99 51


(24)

c10 :
1

420


31 −44 0 44 −31
−5 −62 0 62 5
−17 −68 0 68 17
−5 −62 0 62 5
31 −44 0 44 −31


(25)

c20 :
1

2940


−289 904 −1230 904 −289

71 724 −1590 724 71
191 664 −1710 664 191
71 724 −1590 724 71
−289 904 −1230 904 −289


(26)

c11 :
1

600


44 −63 0 63 −44
−63 −74 0 74 63

0 0 0 0 0
63 74 0 −74 −63
−44 63 0 −63 44


(27)

c30 :
1
10


−1 2 0 −2 1
−1 2 0 −2 1
−1 2 0 −2 1
−1 2 0 −2 1
−1 2 0 −2 1


(28)

c21 :
1
70


4 −2 −4 −2 4
2 −1 −2 −1 2
0 0 0 0 0
−2 1 2 1 −2
−4 2 4 2 −4


(29)

c40 :
1
5


1 −4 6 −4 1
1 −4 6 −4 1
1 −4 6 −4 1
1 −4 6 −4 1
1 −4 6 −4 1


(30)

c31 :
1
20


−2 4 0 −4 2
−1 2 0 −2 1
0 0 0 0 0
1 −2 0 2 −1
2 −4 0 4 −2


(31)

c22 :
1
49


4 −2 −4 −2 4
−2 1 2 1 −2
−4 2 4 2 −4
−2 1 2 1 −2
4 −2 −4 −2 4


(32)

This method works for fields with or without midplane
symmetry, since it allows us to compute all needed deriva-
tives. It was used extensively for the simulation of the partial
siberian snakes in the AGS at BNL, 3 meter long helical
dipoles, using a 2D diametral field map [7]; it proved to
allow the simulation of a complete polarized proton bunch
acceleration cycle (150000 turns of the 807 m circumference
AGS), with very satisfactory accuracy.

Least Squares in Conjunction with RAYTRACE
For a study of the AGS [4], the method described above

for RAYTRACE was used, but it expects a function that can
be obtained at an arbitrary point. The magnets in question
had fields measured in the midplane on a grid. To obtain
the function needed by RAYTRACE, a rectangular grid of 7
points horizontally and 5 points vertically was fit in a least
squares sense to a polynomial (14) to 5th order in x and 3rd
order in z. c matrices could be determined similarly to the
above. The fits were not made on every possible 7 × 5 grid,
but around every 3rd grid point horizontally and 2nd point
longitudinally. To determine which function to evaluate
in RAYTRACE, they determined which of these grids had
its center nearest the point to be evaluated, then used the
corresponding polynomial.
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