Author: Neri, L.
Paper Title Page
MOPAB023 ESS Emittance Measurements at INFN CATANIA 123
 
  • O. Tuske, P. Daniel-Thomas, J.F. Denis, Y. Gauthier, T.J. Joannem, N. Misiara, V. Nadot, G. Perreu, F. Senée, V. Silva
    CEA/IRFU, Gif-sur-Yvette, France
  • L. Celona, L. Neri
    INFN/LNS, Catania, Italy
  • B. Cheymol, T.J. Shea
    ESS, Lund, Sweden
  • I. Chu, M. Monteremand
    CEA LITEN, CEA Grenoble, Grenoble, France
  • Ø. Midttun
    University of Bergen, Bergen, Norway
  • T.V. Vacher
    CEA/DSM/IRFU, France
 
  Beam characteristics at low energy are an absolute necessity for an acceptable injection in the next stage of a linear accelerator, and are also necessary to reduce beam loss and radiation inside the machine. CEA is taking part of ESS linac construction, by designing Emittance Measurement Units (EMU) for the Low Energy Beam Transport (LEBT). The EMU are designed to qualify the proton beam produced by the INFN Catania ion source. This measurement has been decided to be time resolved, allowing to follow the beam emittance reduction, during the pulse length. A 1Mhz acquisition board controlled by EPICS save raw datas to an archiver in order to be able to post process the measurements for time resolution. The design corresponds to an Allison's scanner, using entrance and exit slits, electrostatic plates and a faraday cup. The beamstopper protects the device and can be removable to fit to beam power. It has been manufactured by the CEA/LITEN with copper tungsten HIP technique. This article report the first measurements on the ESS injector at INFN CATANIA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK032 Commissioning of the AISHa Ion Source at INFN-LNS 570
 
  • L. Celona, G. Castro, F. Chines, G. Costa, S. Gammino, O. Leonardi, S. Marletta, D. Mascali, A. Maugeri, L. Neri, F. Noto, S. Passarello, G. Pastore, A. Seminara, G. Torrisi, S. Vinciguerra
    INFN/LNS, Catania, Italy
  • S. Di Martino, P. Nicotra
    Si.A.Tel SRL, Catania, Italy
 
  At INFN-LNS the commissioning of the AISHa superconducting ECRIS started in November 2016. Highly charged ion beams with low ripple, high stability and high reproducibility are the most important features for the ongoing commissioning. In this work, we will show the preliminary results of a parametric study on the extracted current/beam in order to minimize the emittance and increase the brightness taking advantage by its hybrid magnetic system and by a fine frequency tuning system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA037 Development and Commissioning of the Doppler-Shift Unit for the Measurement of the Ion Species Fractions and Beam Energy of the ESS Proton Source 936
 
  • C.A. Thomas, T.J. Shea
    ESS, Lund, Sweden
  • J. Fils
    GSI, Darmstadt, Germany
  • Y. Lussignol, P. Mattei
    CEA/DSM/IRFU, France
  • Ø. Midttun
    University of Bergen, Bergen, Norway
  • L. Neri
    INFN/LNS, Catania, Italy
  • F. Senée, O. Tuske
    CEA/IRFU, Gif-sur-Yvette, France
 
  ESS proton source is in going to be soon delivered to the ESS project. In order to qualify the source, a series of beam instrumentation diagnostics have been designed and produced. In particular, a specific spectrograph dedicated to the fraction species measurement is currently commissioned. This instrument not only is capable of measuring the fraction species produced by the source, but also it can measure their energy and energy spread, the mass of the different species, and additional spectral rays coming from the gas species in presence in the vacuum chamber. We present in this paper the commissioning of this instrument, the Doppler Shift unit, dedicated to the measurement of the fraction species.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK020 Application of Optical Emission Spectroscopy to High Current Proton Sources 1721
 
  • G. Castro, L. Celona, S. Gammino, O. Leonardi, D. Mascali, M. Mazzaglia, E. Naselli, L. Neri, D. Nicolosi, R. Reitano, G. Torrisi
    INFN/LNS, Catania, Italy
  • F. Leone
    INAF-OACT, Catania, Italy
  • M. Mazzaglia, R. Reitano
    Universita Degli Studi Di Catania, Catania, Italy
  • E. Naselli
    Catania University, Catania, Italy
  • B. Zaniol
    Consorzio RFX, Padova, Italy
 
  Optical Emission Spectroscopy (OES) represents a very reliable technique to carry out non-invasive measurements of plasma density and plasma temperature in the range of tens of eV. Instead of other diagnostics, it also allows to characterize the different populations of neutrals and ionized particles constituting the plasma. At INFN-LNS, OES techniques have been developed and applied to characterize the plasma generated by the Flexible Plasma Trap, an ion source used as testbench of the proton source built for European Spallation Source. This work presents the characterization of the parameters of a hydrogen plasma in different conditions of neutral pressure, microwave power and magnetic field profile along with the perspectives for further upgrades of the OES diagnostics system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK021 Microwave Injection and Coupling Optimization in ECR and MDIS Ion Sources 1724
 
  • G. Torrisi, A.C. Caruso, G. Castro, L. Celona, S. Gammino, O. Leonardi, A. Longhitano, D. Mascali, E. Naselli, L. Neri, G. Sorbello
    INFN/LNS, Catania, Italy
  • E. Naselli
    Catania University, Catania, Italy
  • G. Sorbello
    University of Catania, Catania, Italy
 
  The fundamental aspect of coupling between microwave and plasma of the Electron Cyclotron Resonance Ion Source (ECRIS) and Microwave Discharge Ion Source (MDIS) is hereinafter treated together with ad hoc microwave-based plasma diagnostics, as a key element for the next progress and variations with respect to the classical ECR heating mechanism. The future challenges for the production of higher-charge states, higher beam intensity, and high absolute ionization efficiency also demand for the exploration of new heating schemes and synergy between experiments and modeling. An overview concerning microwave transport and coupling issues in plasma-based ion sources for particle accelerator will be given in the paper, along with perspectives for the design of next generation sources.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBB2 Beam Commissioning of the High Intensity Proton Source Developed at INFN-LNS for the European Spallation Source 2530
 
  • L. Neri, L. Allegra, A. Amato, G. Calabrese, A.C. Caruso, G. Castro, L. Celona, F. Chines, G. Gallo, S. Gammino, O. Leonardi, A. Longhitano, G. Manno, S. Marletta, D. Mascali, M. Mazzaglia, A. Miraglia, S. Passarello, G. Pastore, A. Seminara, A. Spartà, G. Torrisi, S. Vinciguerra
    INFN/LNS, Catania, Italy
 
  At the Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund.  
slides icon Slides WEOBB2 [2.457 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOBB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)