Author: Mueller, A.-S.     [Müller, A.-S.]
Paper Title Page
MOOCB1 Time-Resolved Energy Spread Studies at the ANKA Storage Ring 53
 
  • B. Kehrer, E. Blomley, M. Brosi, E. Bründermann, A.-S. Müller, M.J. Nasse, M. Schedler, M. Schuh, M. Schwarz, P. Schönfeldt, N.J. Smale, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • N. Hiller
    PSI, Villigen PSI, Switzerland
  • P. Schütze
    DESY, Hamburg, Germany
 
  Funding: This work has been supported by the Initiative and Networking Fund the Helmholtz Association under contract number VH-NG-320 and the BMBF under contract numbers 05K13VKA and 05K16VKA.
Recently, a new setup for measuring the beam energy spread has been commissioned at the ANKA storage ring at the Karlsruhe Institute of Technology. This setup is based on a fast-gated intensified camera and detects the horizontal profiles of individual bunches in a multi-bunch environment on a single-turn base. As the radiation source point is located in a dispersive section of the storage ring, this allows time-resolved studies of the energy spread. These studies are of particular interest in the framework of short-bunch beam dynamics and the characterization of instabilities. The system is fully synchronized to other beam diagnostics devices allocated in various places along the storage ring, such as the single-shot electro-optical spectral decoding setup or the turn-by-turn terahertz detection systems. Here we discuss the results of the synchronous measurements with the various systems with special emphasis on the energy spread studies.
 
slides icon Slides MOOCB1 [6.514 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOOCB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB055 Towards Near-Field Electro-Optical Bunch Profile Monitoring in a Multi-Bunch Environment 227
 
  • P. Schönfeldt, E. Blomley, E. Bründermann, M. Caselle, S. Funkner, N. Hiller, B. Kehrer, A.-S. Müller, M.J. Nasse, G. Niehues, L. Rota, M. Schedler, M. Schuh, M. Weber
    KIT, Karlsruhe, Germany
 
  Funding: This work is funded by the BMBF contract numbers: 05K13VKA and 05K16VKA.
For electron accelerators, electro-optical methods in the near-field have been shown to be a powerful tool to detect longitudinal bunch profiles. In 2013, we demonstrated for the first time, electro-optical bunch profile measurements in a storage ring at the accelerator test facility and synchrotron light source ANKA at the Karlsruhe Institute of Technology (KIT). To study possible bunch-bunch interactions and its effects on the longitudinal dynamics, these measurements need to be performed in a multi-bunch environment. Up to now, due to long-ranging wake-fields the electro-optical monitoring was limited to single-bunch operation. Here, we present our new in-vacuum setup to overcome this limitation. First measurements show reduced wake-fields in particular around 2 ns, where the subsequent bunch can occur in a multi-bunch environment at ANKA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB056 4-Channel Single Shot and Turn-by-Turn Spectral Measurements of Bursting CSR 231
 
  • J.L. Steinmann, E. Blomley, M. Brosi, E. Bründermann, M. Caselle, B. Kehrer, A.-S. Müller, L. Rota, M. Schuh, P. Schönfeldt, M. Siegel, M. Weber
    KIT, Karlsruhe, Germany
 
  The test facility and synchrotron radiation source ANKA at the Karlsruhe Institute of Technology (KIT) in Karlsruhe, Germany, can be operated in a short-bunch mode. Above a threshold current, the high charge density leads to microwave instabilities and the formation of sub-structures. These time-varying sub-structures on bunches of picosecond duration lead to the observation of bursting coherent synchrotron radiation (CSR) in the terahertz (THz) frequency range. The spectral information in this range contains valuable information about the bunch length, shape and sub-structures. We present recent measurements of a spectrometer setup that consists of 4 ultra-fast THz detectors, sensitive in different frequency bands, combined with the KAPTURE readout system developed at KIT for studies requiring high data throughput. This setup allows to record continuously the spectral information on a bunch-by-bunch and turn-by-turn basis. This contribution describes the potential of time-resolved spectral measurements of the short-bunch beam dynamics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBB3 HORIZON 2020 EuPRAXIA Design Study 1265
 
  • P.A. Walker, R.W. Aßmann, J. Bödewadt, R. Brinkmann, J. Dale, U. Dorda, A. Ferran Pousa, A.F. Habib, T. Heinemann, O. S. Kononenko, C. Lechner, B. Marchetti, A. Martinez de la Ossa, T.J. Mehrling, P. Niknejadi, J. Osterhoff, K. Poder, E.N. Svystun, G.E. Tauscher, M.K. Weikum, J. Zhu
    DESY, Hamburg, Germany
  • D. Alesini, M.P. Anania, F.G. Bisesto, E. Chiadroni, M. Croia, M. Ferrario, F. Filippi, A. Gallo, A. Mostacci, R. Pompili, S. Romeo, J. Scifo, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N.E. Andreev, D. Pugacheva
    JIHT RAS, Moscow, Russia
  • T. Audet, B. Cros, G. Maynard
    CNRS LPGP Univ Paris Sud, Orsay, France
  • A. Bacci, D. Giove, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • I.F. Barna, M.A. Pocsai
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
  • A. Beaton, P. Delinikolas, B. Hidding, D.A. Jaroszynski, F.Y. Li, G.G. Manahan, P. Scherkl, Z.M. Sheng, M.K. Weikum
    USTRAT/SUPA, Glasgow, United Kingdom
  • A. Beck, A. Specka
    LLR, Palaiseau, France
  • A. Beluze, M. Mathieu, D.N. Papadopoulos
    LULI, Palaiseau, France
  • A. Bernhard, E. Bründermann, A.-S. Müller
    KIT, Karlsruhe, Germany
  • S. Bielawski
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • F. Brandi, G. Bussolino, L.A. Gizzi, P. Koester, B. Patrizi, G. Toci, M. Vannini
    INO-CNR, Pisa, Italy
  • O. Bringer, A. Chancé, O. Delferrière, J. Fils, D. Garzella, P. Gastinel, X. Li, A. Mosnier, P.A.P. Nghiem, J. Schwindling, C. Simon
    CEA/IRFU, Gif-sur-Yvette, France
  • M. Büscher, A. Lehrach
    FZJ, Jülich, Germany
  • M. Chen, L. Yu
    Shanghai Jiao Tong University, Shanghai, People's Republic of China
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • J.A. Clarke, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette, France
  • G. Dattoli, F. Nguyen
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • N. Delerue
    LAL, Orsay, France
  • J.M. Dias, R.A. Fonseca, J.L. Martins, L.O. Silva, U. Sinha, J. Vieira
    IPFN, Lisbon, Portugal
  • K. Ertel, M. Galimberti, R. Pattathil, D. Symes
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Fils
    GSI, Darmstadt, Germany
  • A. Giribono
    INFN-Roma, Roma, Italy
  • L.A. Gizzi
    INFN-Pisa, Pisa, Italy
  • F.J. Grüner, A.R. Maier
    CFEL, Hamburg, Germany
  • F.J. Grüner, T. Heinemann, B. Hidding, O.S. Karger, A. Knetsch, A.R. Maier
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • C. Haefner
    LLNL, Livermore, California, USA
  • B.J. Holzer
    CERN, Geneva, Switzerland
  • S.M. Hooker
    University of Oxford, Clarendon Laboratory, Oxford, United Kingdom
  • S.M. Hooker, R. Walczak
    JAI, Oxford, United Kingdom
  • T. Hosokai
    Osaka University, Graduate School of Engineering, Osaka, Japan
  • C. Joshi
    UCLA, Los Angeles, California, USA
  • M. Kaluza
    HIJ, Jena, Germany
  • S. Karsch
    LMU, Garching, Germany
  • E. Khazanov, I. Kostyukov
    IAP/RAS, Nizhny Novgorod, Russia
  • D. Khikhlukha, D. Kocon, G. Korn, A.Y. Molodozhentsev, L. Pribyl
    ELI-BEAMS, Prague, Czech Republic
  • L. Labate, P. Tomassini
    CNR/IPP, Pisa, Italy
  • W. Leemans, C.B. Schroeder
    LBNL, Berkeley, California, USA
  • A. Lifschitz, V. Malka, F. Massimo
    LOA, Palaiseau, France
  • V. Litvinenko
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • W. Lu
    TUB, Beijing, People's Republic of China
  • V. Malka
    Ecole Polytechnique, Palaiseau, France
  • S. P. D. Mangles, Z. Najmudin, A. A. Sahai
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A. Marocchino, A. Mostacci
    University of Rome La Sapienza, Rome, Italy
  • K. Masaki, Y. Sano
    JAEA/Kansai, Kyoto, Japan
  • U. Schramm
    HZDR, Dresden, Germany
  • M.J.V. Streeter, A.G.R. Thomas
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • C.-G. Wahlstrom
    Lund Institute of Technology (LTH), Lund University, Lund, Sweden
  • R. Walczak
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
  • M. Yabashi
    JASRI/SPring-8, Hyogo, Japan
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  The Horizon 2020 Project EuPRAXIA ('European Plasma Research Accelerator with eXcellence In Applications') aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.  
slides icon Slides TUOBB3 [9.269 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB037 An Optimized Lattice for a Very Large Acceptance Compact Storage Ring 1402
 
  • A.I. Papash, E. Bründermann, A.-S. Müller
    KIT, Karlsruhe, Germany
 
  Combining a circular storage ring and a laser wakefield accelerator (LWFA) might be the basis for future compact light sources and advancing user facilities to different commercial applications. Meanwhile the post-LWFA beam is not directly suitable for storage and accumulation in conventional storage rings. New generation rings with adapted features are required. Different geometries and ring lattices of very large-acceptance compact storage ring operating between 50 to 500 MeV energy range were studied. The main objective was to create a model suitable to store the post-LWFA beam with a wide momentum spread (2% to3%) and ultra-short electron bunches of fs range. The DBA-FDF lattice with relaxed settings, split elements and optimized parameters allows to open the dynamic aperture up to 20 mm while dispersion is limited and sextupole strength is high. The proposed machine model could be a basis for further, more detailed design studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK014 Detailed Analysis of a Linear Beam Transport Line from a Laser Wakefield Accelerator to a Transverse-Gradient Undulator 1711
 
  • A. Will, A. Bernhard, A.-S. Müller, C. Widmann
    KIT, Karlsruhe, Germany
  • M. Kaluza
    HIJ, Jena, Germany
  • M. Kaluza
    IOQ, Jena, Germany
 
  A linear beam transport system, experimentally tested at the Laser Wakefield Accelerator in Jena, Germany, has been carefully analyzed in order to gain a deeper understanding of the experimental results and to develop experimental strategies for the future. This analysis encompassed a detailed characterization of the focusing magnets and an investigation of the effects of source parameters as well as magnet and alignment errors on the observables accessible in the experiment. A dedicated tracking tool was developed for these investigations. In this contribution we review the main results of these studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB011 High Order Magnetic Field Components and Non-Linear Optics at the ANKA Storage Ring 2586
 
  • A.I. Papash, E. Blomley, J. Gethmann, E. Huttel, A.-S. Müller, M. Schuh
    KIT, Karlsruhe, Germany
 
  The Karlsruhe Institute of technology operates the 2.5 GeV electron storage ring ANKA as an accelerator test facility and synchrotron radiation source. A superconducting wiggler is installed in a short straight section of the ring where vertical beta-function is large (13 m). The life time of the electron beam was reduced from 15 to 12 hours at a high field level of the wiggler (2.5 T) even though the coherent shift of vertical tune was compensated locally. Computer simulations show the non-linear nature of the effect. The ANKA storage ring operates with strong sextupoles at a positive chromaticity of +2/+6. Even residual octupole components of the wiggler field, set at the tolerance limit of fabrication conditions, could reduce the dynamic aperture for off-momentum particles providing the betatron tune is located in the vicinity of a weak octupole resonance and the chromaticity is high. Also the vertical betatron tune is close to the sextupole resonance Qy=8/3. Large resonance stop-band and proximity of sextupole resonance affect the life time as well. Betatron tunes of ANKA have been shifted away of suspected high-order resonances and beam life time was essentially improved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK068 Non-Linear Beam Dynamics Studies of the CLIC Damping Wiggler Prototype 3087
 
  • J. Gethmann, A. Bernhard, E. Blomley, E. Huttel, A.-S. Müller, A.I. Papash, M. Schedler
    KIT, Karlsruhe, Germany
  • Y. Papaphilippou, P. Zisopoulos
    CERN, Geneva, Switzerland
  • K. Zolotarev
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Julian Gethmann acknowledges the support by the DFG-funded Doctoral School Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology
First beam dynamics studies of a damping wiggler prototype for the CLIC damping rings have been carried out at the KIT storage ring. Effects of the 2.9 T superconducting wiggler on the electron beam in the 2.5 GeV standard operation mode have been measured and compared with theoretical predictions. Higher order multipole components were investigated using local orbit bump measurements. Based on these findings the simulation models for the storage ring optic have been adjusted. The refined optics model has been applied to the 1.3 GeV, low-operation case. This case will be used to experimentally benchmark beam dynamics simulations involving strong wiggler fields and dominant collective effects. We present these measurements, comparisons and the findings of the simulations with the updated low-mode optics model.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBA1 Studies of the Micro-Bunching Instability in Multi-Bunch Operation at the ANKA Storage Ring 3645
SUSPSIK058   use link to see paper's listing under its alternate paper code  
 
  • M. Brosi, E. Blomley, E. Bründermann, M. Caselle, B. Kehrer, A. Kopmann, A.-S. Müller, L. Rota, M. Schedler, M. Schuh, M. Schwarz, P. Schönfeldt, J.L. Steinmann, M. Weber
    KIT, Karlsruhe, Germany
 
  Funding: Supported by the German Federal Ministry of Education and Research (05K13VKA & 05K16VKA), the Helmholtz Association (VH-NG-320) and the Helmholtz International Research School for Teratronics (HIRST)
The test facility and synchrotron light source ANKA at the Karlsruhe Institute of Technology (KIT) operates in the energy range from 0.5 to 2.5 GeV and can generate brilliant coherent synchrotron radiation (CSR) in the THz range employing a dedicated bunch length-reducing optic at 1.3 GeV beam energy. The high degree of spatial compression leads to complex longitudinal dynamics and to time evolving sub-structures in the longitudinal phase space of the electron bunches. The results of the micro-bunching instability are time-dependent fluctuations and strong bursts in the radiated THz power. To study these fluctuations in the emitted THz radiation simultaneously for each individual bunch in a multi-bunch environment, fast THz detectors are combined with KAPTURE, the dedicated KArlsruhe Pulse Taking and Ultrafast Readout Electronics system, developed at KIT. In this contribution we present measurements conducted to study possible multi-bunch effects on the characteristic bursting behavior of the micro-bunch instability.
 
slides icon Slides THOBA1 [12.910 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THOBA1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA045 Telecommunication Concepts for Compact, Electro-Optical and Frequency Tunable Sensors for Accelerator Diagnostics 4534
 
  • E. Bründermann, A.-S. Müller
    KIT, Karlsruhe, Germany
  • I. Hosako, I. Morohashi, S. Nakajima, S. Saito, N. Sekine
    NICT, Tokyo, Japan
 
  Funding: Supported by Invitation Fellowship for Research ID No. S16704 of Japan Society for the Promotion of Science (JSPS) awarded to E.B. hosted by I.H.
Terahertz diagnostics* for investigating the properties of electron and photon beams**, especially the investigation of electron bunch instabilities, accompanied by terahertz photon bursts is increasingly employed to monitor and investigate electron bunch dynamics***. Recent advances in information and communications technology promise compact sensors based on telecom and thus industry standards. We present potential applications of such technology concepts for accelerators, including a miniature probe for electro-optical sampling, which could be employed for electron bunch electrical near-field studies, and laser sources with widely tunable pulse repetition rates adaptable for pulsed diagnostics***.
* E. Bründermann, H.-W. Hübers, M.F. Kimmitt, Terahertz Techniques, Springer-Verlag (2012).
** J.L. Steinmann et al., Phys. Rev. Lett. 117, 174802, 2016.
*** M. Brosi et al., Phys. Rev. Accel. Beams 19, 110701, 2016.
**** I. Morohashi et al., Nano Commun Netw 10, 79, 2016.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)