Author: Maclean, E.H.
Paper Title Page
MOPAB130 Cross-Calibration of the LHC Transverse Beam-Profile Monitors 437
 
  • R. Alemany-Fernández, F. Alessio, A. Alexopoulos, C. Barschel, F.S. Carlier, J.M. Coello de Portugal, M. Ferro-Luzzi, A. Garcia-Tabares, M. Hostettler, O. Karacheban, E.H. Maclean, R. Matev, T. Persson, P.K. Skowroński, R. Tomás, G. Trad, S. Vlachos, B. Würkner
    CERN, Geneva, Switzerland
  • G.R. Coombs
    EPFL, Lausanne, Switzerland
  • T.B. Hadavizadeh
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • M. Hofer
    TU Vienna, Wien, Austria
  • L. van Riesen-Haupt
    University of Oxford, Oxford, United Kingdom
 
  Calibration of a transverse beam profile monitor is of fundamental importance to guarantee the best possible accuracy and reliability of the instrument over time. In LHC the calibration standard for transverse-profile measurements are the wire scanners. Other profile monitors such as beam synchrotron light telescopes and interferometers are calibrated with respect to them. Additional information about single-bunch sizes can be obtained from beam-gas imaging in the LHCb vertex detector, from the transverse convolved beam sizes extracted from luminosity scans at the collision points, and from the evolution of the luminous-region parameters as reconstructed by ATLAS and CMS inner tracker detectors during such scans. For the first time in LHC, a dedicated cross-calibration of all the above-mentioned systems was carried out with beam in 2016. Additionally, dedicated optics measurements were also performed in order to determine with the highest possible accuracy the amplitude function at the interaction points and at the position of the profile monitors. Results of these measurements are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB130  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA038 Non Linear Field Correction Effects on the Dynamic Aperture of the FCC-hh 2143
 
  • E. Cruz Alaniz, A. Seryi
    JAI, Oxford, United Kingdom
  • E.H. Maclean, R. Martin, R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: European Union's Horizon 2020 research and innovation programme under grant No 654305.
The Future Circular Collider (FCC) design study aims to develop the designs of possible circular colliders in the post LHC era. In particular the FCC-hh will aim to produce proton-proton collisions at a center of mass energy of 100 TeV. Given the large beta functions and integrated length of the quadrupoles of the final focus triplet the effect of systematic and random non linear errors in the magnets are expected to have a severe impact on the stability of the beam. Following the experience on the HL-LHC this work explores the implementation of non-linear correctors to minimize the resonance driving terms arising from the errors of the triplet. Dynamic aperture studies are then performed to study the impact of this correction.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK030 Experimental Validation of the Achromatic Telescopic Squeezing Scheme at the LHC 2992
 
  • S.D. Fartoukh, R. Bruce, F.S. Carlier, J.M. Coello de Portugal, A. Garcia-Tabares, E.H. Maclean, L. Malina, A. Mereghetti, D. Mirarchi, T. Persson, M. Pojer, L. Ponce, S. Redaelli, B. Salvachua, P.K. Skowroński, M. Solfaroli, R. Tomás, D. Valuch, A. Wegscheider, J. Wenninger
    CERN, Geneva, Switzerland
 
  The Achromatic Telescopic Squeezing (ATS) [1] scheme offers new techniques to deliver unprecedentedly small beam spot size at the interaction points of the ATLAS and CMS experiments of the LHC, while perfectly controlling the chromatic properties of the corresponding optics (linear and non-linear chromaticities, off-momentum beta-beating, spurious dispersion induced by the crossing bumps). The first series of beam tests with ATS optics were achieved during the LHC Run I (2011/2012) for a first validation of the basics of the scheme at small intensity. In 2016, a new generation of more performing ATS optics was developed and more extensively tested in the machine, still with probe beams for optics measurement and correction at β*=10 cm, but also with a few nominal bunches to establish first collisions at nominal β* (40 cm) and beyond (33 cm), and to analysis the robustness of these optics in terms of collimation and machine protection. The paper will highlight the most relevant and conclusive results which were obtained during this second series of ATS tests.
[1] S. Fartoukh , Phys. Rev. ST Accel. Beams 16, 111002
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK091 Amplitude Dependent Closest Tune Approach Generated by Normal and Skew Octupoles 3147
 
  • E.H. Maclean, T. Persson, R. Tomás
    CERN, Geneva, Switzerland
 
  Amplitude dependent closest tune approach, an action dependent analogue of the DQmin generated by linear coupling, was observed in the LHC during Run1. It restricts the accessible resonance free area of the tune diagram and by altering tune spread has the potential to impact upon Landau damping. A theoretical description of such behaviour, generated by normal octupoles and linear coupling has recently been validated in the LHC, however simulation has established that amp-dependent closest approach may also be generated by a combination of normal and skew octupoles. This paper summarizes these simulation based observations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK092 Effect of Linear Coupling on Nonlinear Observables at the LHC 3151
 
  • E.H. Maclean, F.S. Carlier, M. Giovannozzi, T. Persson, R. Tomás
    CERN, Geneva, Switzerland
 
  Simulation work during LHC Run 1 established that linear coupling had a large impact on nonlinear observables such amplitude detuning and dynamic aperture. It is generally taken to be the largest single source of uncertainty in the modelling of the LHC's nonlinear single particle dynamics. Measurements in 2016 sought to confirm this impact of linear coupling with beam. This paper summarizes the observed influence of linear coupling on various nonlinear observables in the LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK093 New Methods for Measurement of Nonlinear Errors in LHC Experimental IRs and Their Application in the HL-LHC 3155
 
  • E.H. Maclean, F.S. Carlier, J.M. Coello de Portugal, A. Garcia-Tabares, M. Giovannozzi, L. Malina, T. Persson, P.K. Skowroński, R. Tomás
    CERN, Geneva, Switzerland
 
  Studies of nonlinear errors in LHC experimental insertions (IRs) during Run 1 were based upon feed-down to tune and coupling from the crossing angle orbit bumps. Useful for validating the magnetic model, this method alone is of limited use to understand discrepancies between magnetic and beam-based measurement. Feed-down from high-order multipoles is also difficult to observe. During Run 2 several alternative methods were tested in the LHC. This paper summarizes the results of these tests, and comments on their potential application to the High-Luminosity LHC upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB056 Dynamic Aperture Studies of the Long-Range Beam-Beam Interaction at the LHC 3840
 
  • M.P. Crouch, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • J. Barranco García, T. Pieloni, C. Tambasco
    EPFL, Lausanne, Switzerland
  • X. Buffat, M. Giovannozzi, E.H. Maclean
    CERN, Geneva, Switzerland
  • B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Long-range beam-beam interactions dictate the choice of operational parameters for the LHC, such as the crossing angle and β* and therefore the luminosity reach for the collider. These effects can lead to particle losses, closed orbit effects and emittance growth. Defining how these effects depend on the beam-beam separation will determine the minimum crossing angle and the β* the LHC can operate. In this article, analysis from a dedicated machine study is presented in which the crossing angle was reduced in steps and the impact on beam intensity and luminosity lifetimes were observed. Based on the observations during the machine study, the intensity decays are compared to expectations from models. Estimates of the luminosity reach in the LHC are also computed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)