AMPLITUDE DEPENDENT CLOSEST TUNE APPROACH GENERATED BY NORMAL AND SKEW OCTUPOLES

E.H. Maclean, T.H.B Persson, R. Tomás, CERN, Geneva, Switzerland

Abstract

Amplitude dependent closest tune approach, an action dependent analogue of the ΔQ_{min} generated by linear coupling, was observed in the LHC in 2012. It restricts the accessible resonance free area of the tune diagram and by altering tune spread can impact upon Landau damping. A theoretical description of such behaviour, generated by normal octupoles and linear coupling, was recently validated in the LHC. Simulation has also established that amplitude-dependent closest approach can be generated by a combination of normal and skew octupoles. This paper summarizes these simulation based observations.

INTRODUCTION

Transverse linear coupling, generated by skew quadrupole and solenoid fields, creates a closest approach (ΔQ_{min}) of the horizontal and vertical tunes [1]. To wit, the working point cannot move closer to the difference coupling resonance $(Q_{x,frac} - Q_{y,frac} = 0)$ than the width of the linear coupling stop-band, $|C^-| = \Delta Q_{min}$. During nonlinear dynamics studies of the LHC at injection in 2012, it was observed that as octupolar detuning forced Q_x and Q_y together as a function of increasing amplitude, tune separation did not saturate to the well defined value of the linear coupling as expected, but to a significantly larger separation [2]. The observation was qualitatively reproduced in simulation and clearly associated with coupling between horizontal and vertical planes. The observation was interpreted as an amplitude dependent ΔQ_{min} [2,3]. The initial observations in measurement and simulation are shown in Fig. 1, reproduced from [2,4].

Figure 1: First observation of amplitude dependent closest tune approach [2].

Having observed this previously unconsidered behaviour in the LHC, extensive simulations were carried out to determine potential sources [4]. It was shown that linear coupling in combination with normal octupoles could not only substantially increase ΔQ_{min} at large amplitudes, but also allow penetration inside the linear coupling stop-band [4]. A theory for the mechanism behind this behaviour was proposed in terms of the interaction of linear coupling with the h_{1111} Hamiltonian coefficient generated by normal octupoles [5]. Specific predictions of this theory have now been validated in the LHC [6].

Amplitude-dependent ΔQ_{min} can lead to highly nonlinear distortions of the tune footprint in the vicinity of the $Q_x - Q_y$ resonance, and is of concern in regard to Landau damping. Fortunately, control of linear coupling is becoming a priority for LHC operation. In 2016 correction of $|C^{-}|$ below the per-mil level was demonstrated [7]. New operational tools should allow tighter control of $|C^-|$ during regular operation [6, 8-11]. Generation of amplitude-dependent ΔQ_{min} by linear coupling and normal octupoles is likely to be better suppressed in future LHC and HL-LHC operation. This motivates the search for additional sources of amplitude-dependent ΔQ_{min} in simulation, which may become meaningful contributions as $|C^-|$ is reduced.

AMPLITUDE DEPENDENT ΔQ_{min} FROM NORMAL AND SKEW OCTUPOLES

Inclusion of skew octupole (a_4) errors in an LHC model, with Landau octupoles (MO) powered, prevented detuning of particles to the $Q_x - Q_y$ resonance, even though no sources of linear coupling were included in the simulation. This is shown in Fig. 2. In the absence of a_4 errors the coupling resonance could be reached as a function of increasing particle amplitude. That normal octupoles on their own do not create an amplitude dependence of the closest tune approach was also well established in earlier studies of amplitudedependent ΔQ_{min} generated by linear coupling in conjunction with b_4 [4]. Inclusion of a_4 errors into simulation appears therefore to have generated a nonlinear ΔQ_{min} .

Before pursuing further study of the ΔQ_{min} generated by inclusion of a_4 errors, the relevance in relation to the already established source of amplitude-dependent ΔQ_{min} was assessed. Figure 3 shows the approach of tracking simulations to the $Q_x - Q_y$ resonance at injection, for particles of increasing amplitude. Landau octupoles are powered in all simulations at their values for 2012 LHC operation. Blue data shows the amplitude-dependent ΔQ_{min} created by linear coupling and normal octupoles. In this case $|C^-| = 0.001$, and for zero amplitude one could approach to the pale blue coupling stop-band. This represents an optimistic value of linear coupling for LHC operation at injection. Red data shows the approach to $Q_x - Q_y$ for a model containing only Landau octupoles and a_4 errors, with no linear coupling sources. In this case the nonlinear ΔQ_{min} corresponds to the

authors

espectiv

05 Beam Dynamics and Electromagnetic Fields

ISBN 978-3-95450-182-3

Figure 2: Detuning of particles towards the linear coupling resonance, with a_4 errors and Landau octupoles included in the simulation. $|C^-| = 0.000$ in this simulation.

closest approach of red tracking data to the gray resonance line. The nonlinear ΔQ_{min} generated by inclusion of a_4 errors is comparable to that generated by linear coupling and octupoles for a realistic operational scenario. Green data demonstrates that in a model combining linear coupling, a_4 errors, and Landau octupoles, the nonlinear closest approach is enhanced relative to either individual source. There is a clear motivation therefore for further understanding of the a_4 source.

Figure 3: Approach to the $Q_x - Q_y$ resonance for LHC simulations at injection, including various multipole sources.

The nonlinear ΔQ_{min} generated by a_4 errors has only been studied in simulation, and confirmation in a real accelerator will be desired. A nonlinear ΔQ_{min} at the level of $1 - 3 \times 10^{-3}$, as predicted from the a_4 error simulations, is unlikely to be measurable. The LHC is equipped with skew octupole correctors, located on the left and right sides its four experimental insertions. These are intended for compensation of resonances driven by a_4 errors in the Insertion Regions (IR) at low- β^* , but have never been used operationally. Figure 4 shows the approach to the $Q_x - Q_y$ resonance for LHC simulations at injection, with MO powered as per 2012 operation, and with various configurations of the IR- a_4 correctors. No other multipole sources are included in the simulation. The top plot shows an increasing nonlinear ΔQ_{min} as a_4 corrector strengths are uniformly increased to their maximum current in all circuits. The lower plot shows various configurations of the a_4 correctors. Fig. 5 shows an example of the simulated spectrum obtained as a function of particle amplitude for a uniform 50 % powering of the a_4 correctors. On the level demonstrated by these simulations a beam-based validation should be possible in the LHC.

Figure 4: Detuning of particles towards the $Q_x - Q_y$ resonance with increasing strength of a_4 correctors in LHC insertions at injection (top). Detuning for various configurations of a_4 circuits (bottom). $|C^-|=0.000$ in all cases.

Figure 5: Frequency spectrum vs kick amplitude with 50 % powering in a_4 correctors.

While measurements with beam will be a necessary part of future studies of nonlinear ΔQ_{min} generated by a_4 , the mechanism can also be explored further in simulation. Conventionally amplitude-dependent ΔQ_{min} has been studied, both in simulation and with beam, via saturation of tune separation while amplitude detuning from normal octupoles force $Q_{x,y}$ towards the coupling resonance. In such studies the effect of a_4 cannot be separated from the normal octupoles, which provide the mechanism to move towards the linear ΔQ_{min} . An alternative study can be considered, where a tune trim is used to move the working point iteratively closer to the $Q_x - Q_y$ resonance, prior to tracking

ISBN 978-3-95450-182-3

05 Beam Dynamics and Electromagnetic Fields

Ў 3148 🛛 D02 Non-linear Single Particle Dynamics - Resonances, Tracking, Higher Order, Dynamic Aperture, Code

simulations with a particle of well defined amplitude. This represents an application of the classical coupling measurement, wherein tunes are forced together to determine ΔQ_{min} , to tracking simulations with non-zero particle amplitude. Figure 6 shows the result of these tracking simulations.

Figure 6: Tune separation in LHC models with only a_4 , and with a_4 plus b_4 sources included.

Figure 6 (top) shows tune separation as a function of the working point trim, in a model containing only a_4 sources. Regardless of particle amplitude the tunes approach $Q_x - Q_y$ unhindered. In contrast when both a_4 and b_4 sources are included (Fig. 6, bottom), particles at zero amplitude behave according to the linear expectation while particles at large amplitudes are unable to approach within some threshold of the $Q_x - Q_y$ resonance. The amplitude dependent closest tune approach observed in Fig. 2-4 is therefore not generated by a_4 sources in isolation, but only in combination between normal and skew octupole fields.

In Fig. 4 (bottom) a slight asymmetry was seen between the amplitude-dependent ΔQ_{min} generated with a_4 correctors on the left side of the IRs powered (red), and simulations where only the right side of the IPs were powered (blue). This may provide first hints as to a mechanism generating the nonlinear ΔQ_{min} , since a_4 correctors either side of the IP lie at differing ratios of β_x/β_y , and will therefore favourably drive RDTs corresponding to either the x^3y or y^3x skew octupole Hamiltonian terms. This feature should be enhanced at low- β^* optics. Figure 7 shows simulations at $\beta^* = 0.4$ m, with octupole powering from 2016 operation and strong a_4 sources left or right of IR1 and IR5 (the LHC's low- β IRs). With negative octupole polarity (red and blue data in Fig. 7), and large vertical kicks, there is a clear enhancement to footprint distortion for a_4 correctors on the right side of the IR1 and IR5 (blue) where $\beta_y \gg \beta_x$. When octupole polarity is reversed (purple and green data in Fig. 7), and kicks are performed horizontally, the opposite situation arises and correctors on the left side of IR1 and 5 (purple), with $\beta_x \gg \beta_y$, generate the greater distortion.

Results of Fig. 7 should not be over-interpreted. The simulated behaviour for opposite octupole polarities are quite different and simply powering correctors with $\beta_{x,y} \gg \beta_{y,x}$

Figure 7: Approach to $Q_x - Q_y = 0$, for negative MO polarity with vertical kicks, and positive MO polarity with horizontal kicks. Only a_4 correctors left of IR1 and 5, or only right of IR1 and 5, are powered. $|C^-|=0.0$ in all cases.

does not fully suppress any particular RDTs. However, this may still hint that Hamiltonian terms from both the x^3y and y^3x skew octupole monomials contribute. Further studies will be required however, to isolate the specific mechanism at work.

CONCLUSIONS

In isolation normal octupole fields do not affect observed ΔQ_{min} . Similarly, skew octupoles alone do not hinder particles approach to the $Q_x - Q_y$ resonance. In combination however, normal and skew octupoles have been observed in simulation to generate an amplitude dependence of the closest tune approach. In the LHC at injection, the measured skew octupole errors and operation configurations of the normal octupoles create a nonlinear ΔQ_{min} in simulation which is comparable with already established and understood sources. By using a_4 correctors in the experimental insertions to artificially enhance the skew octupole content of the machine, validation of the amplitude dependent closest tune approach generated by normal and skew octupoles should be possible in the LHC at injection.

ACKNOWLEDGMENTS

Many thanks to M. Giovannozzi and G.Arduini for their comments and feed-back.

REFERENCES

- G. Guignard, "Betatron coupling and related impact of radiation," *Phys. Rev. E*, vol. 51, no. 6, 1995. https://cds.cern.ch/record/300856?ln
- [2] E.H. Maclean, R. Tomás, F. Schmidt, and T.H.B. Persson, "Measurement of LHC nonlinear observables using kicked beams," *Phys. Rev. ST. Accel. Beams*, vol. 17, no. 081002, 2014. https://journals.aps.org/prstab/abstract/10.1103/PhysRevSTAB.17.081002
- [3] E.H. Maclean, "Modelling and correction of the non-linear transverse dynamics of the LHC from beam-based measurements," Ph.D. dissertation, University of Oxford, Trinity 2014.

05 Beam Dynamics and Electromagnetic Fields

ISBN 978-3-95450-182-3

D02 Non-linear Single Particle Dynamics - Resonances, Tracking, Higher Order, Dynamic Aperture, Code 3149

- [4] E. T. Persson, R. Tomaás, and Y. Levinsen, "Non-linear coupling studies in the LHC," in *Proc. IPAC*, 15, Richmond, VA, USA, May 2015, paper TUPTY042, pp,2105-2107.
- [5] R. Tomás, T.H.B. Persson, and E.H. Maclean, "Amplitude dependent closest tune approach," *Phys. Rev. Accel. Beams*, vol. 19, no. 071003, 2016. http://journals.aps.org/prab/ abstract/10.1103/PhysRevAccelBeams.19.071003
- [6] T.H.B. Persson, M. Gasior, E.H. Maclean, O. Jakub, R. Tomás, D. Valuch, D. Wierichs, and F.S. Carlier, "Suppression of Amplitude dependent closest tune approach and iňĄrst tests of the ADT as an AC-dipole (MD 1412)," Tech. Rep., 2016, CERN-ACC-Note-2016-0057. https://cds.cern.ch/record/2220704?ln
- [7] E.H. Maclean, F.S. Carlier, S. Fartoukh, T.H.B. Persson, P.K. Skowronski, R. Tomás, and D. Wierichs, "Demonstration of coupling correction below the per-mil limit in the LHC," Tech. Rep., 2016, CERN-ACC-NOTE-2016-0053. https://cds.cern.ch/record/2210530?ln

- [8] T. Persson and R. Tomás, "Improved control of the betatron coupling in the Large Hadron Collider," *Phys. Rev. ST. Accel. Beams*, vol. 17, no. 051004, 2014.
- [9] T. Persson, M. Gasior, A. Langner, T. Lefevre, E.H. Maclean et al., "Towards automatic coupling corrections with DOROS BPMs (MD750)," Tech. Rep., 2015, CERN-ACC-NOTE-2015-0033. https://cds.cern.ch/record/2063000?ln
- [10] T.H.B. Persson, G. Baud, J.M. Coello de Portugal, M. Gasior, M. Giovannozzi, J. Olexa, R. Tomás, A. Valdivieso, and D. Valuch, "Linear coupling dependence on intensity and a next step towards a feedback (MD1850)," Tech. Rep., 2017, CERN-ACC-NOTE-2017-0008. https://cds.cern.ch/record/ 2255976?ln
- [11] E. Fol, J.M. Coello de Portugal, T. Persson, and R. Tomás, "LHC MD 1988: Automatic coupling correction test," Tech. Rep., 2017, CERN-ACC-NOTE-2017-0010. https: //cds.cern.ch/record/2253141?ln