Author: Kearney, S.P.
Paper Title Page
THPAB154 Mechanical Design of Compact Vertical and Horizontal Linear Nanopositioning Flexure Stages With Centimeter-Level Travel Range for X-Ray Beamline Instrumentation 4096
 
  • D. Shu, J.W.J. Anton, S.P. Kearney, B. Lai, W. Liu, J. Maser, C. Roehrig, J.Z. Tischler
    ANL, Argonne, Illinois, USA
  • J.W.J. Anton
    University of Illinois at Chicago, Chicago, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Nanopositioning techniques present an important capability to support the state-of-the-art x-ray instrumentation research for the APS operations and upgrade project. To overcome the performance limitations of precision ball-bearing-based or roller-bearing-based linear stage systems, compact vertical and horizontal linear nanopositioning flexure stages have been designed and developed at the APS with centimeter-level travel range and nanometer-level resolution for x-ray beamline instrumentation. Using improved deformation compensated linear guiding mechanisms [*,**], the APS T8-55 vertical linear flexure stage and T8-56 horizontal linear flexure stage are initially designed as a pair of sample scanning stages for a hard x-ray scanning microscope at the APS sector 2. Due to their unique repeatable nanopositioning performance over the centimeter-level travel range, these stages are also suitable for many photon beam lines optics with repeatable and stable nanopositioning requirements. The mechanical design and finite element analyses of the APS T8-55 and T8-56 flexural stages, as well as its initial mechanical test results with laser interferometer are described in this paper.
* D. Shu, W. Liu, S. Kearney, J. Anton, B. Lai, J. Maser, C. Roehrig, and J. Z. Tischler, Proceedings of MEDSI-2016, Sept. 11-16, 2016, Barcelona, Spain.
** U.S. Patent granted No. 8,957, 567, D. Shu, S. Kearney, and C. Preissner, 2015.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB154  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)