Author: Fedotov, A.V.
Paper Title Page
TUPAB142 Tracking of Electrons Created at Wrong RF Phases in the RHIC Low Energy Cooler 1666
 
  • J. Kewisch, A.V. Fedotov, D. Kayran, S. Seletskiy
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract No. DE-SC0012704.
The RHIC Low Energy Cooler will be based on a 400 keV DC electron gun with a photo-cathode and a 2.2 MeV SRF booster cavity. Electron that leave the cathode at the wrong time may be decelerated and turned around in the booster and return to the cathode with energies up to 1 MeV. On the way back these electron will encounter the defocussing EM fields up to nine following electron bunches. Such electrons may be created for various reasons: Cosmic rays, stray laser light including a catastrophic failure of the laser timing system or as secondaries of returning electrons. We present tracking results from the GPT program* and discuss the consequences for the machine protection system.
* www.pulsar.nl
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB142  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB143 Dependence of LEReC Beam Energy Spread on Photocathode Laser Modulation 1669
 
  • S. Seletskiy, M. Blaskiewicz, A.V. Fedotov, D. Kayran, J. Kewisch, M.G. Minty, B. Sheehy, Z. Zhao
    BNL, Upton, Long Island, New York, USA
  • B. Sheehy
    Sheehy Scientific Consulting, Wading River, New York, USA
 
  Present requirements to the photocathode DC gun of the low energy RHIC electron cooling (LEReC) project is to produce 100 ps long bunch of electrons with 130 pC charge. The laser pulse of required length will be produced with the stacking of multiple few picosecond long sub-pulses. Depending on the choice of the laser sub-pulse length and on the relative delay between these sub-pulses one can obtain laser pulse with various longitudinal intensity modulations. The longitudinal modulation of laser intensity creates longitudinal modulation of electron bunch charge. Such modulation is known to cause the growth of e-beam uncorrelated energy spread in photoinjectors - the effect we would like to avoid. In this paper we estimate growth of e-beam energy spread due to its initial density modulation and set requirements to the maximum allowable depth of longitudinal modulation of photocathode laser intensity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB143  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB145 Alignment of Electron and Ion Beam Trajectories in Non-Magnetized Electron Cooler 1672
 
  • S. Seletskiy, M. Blaskiewicz, A.V. Fedotov, D. Kayran, J. Kewisch, R.J. Michnoff, I. Pinayev
    BNL, Upton, Long Island, New York, USA
 
  The cooling section (CS) of the low energy RHIC electron cooler (LEReC) consists of two 20 m long parts each containing six solenoids with trajectory correctors placed inside the solenoids and the BPMs located downstream of each solenoid. The solenoids are used to minimize the scalloping of the electron beam envelope. To obtain the cooling it is required to keep the overall RMS electron angles in the cooling section below 100 urad. Possible mechanical misalignment, such as shift and inclination of the CS solenoids can cause an unacceptable misalignment of the e-beam trajectory with respect to the ideal trajectory set by ions. Therefore, it is critical to perform a beam based alignment of the CS solenoids. In this paper we suggest a procedure for such an alignment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB145  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA047 IBS Simulation with Different RF Configurations in RHIC 2178
 
  • C. Liu, A.V. Fedotov, M.G. Minty, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
This report focuses on three dimensional emittance growth of polarized proton beam due to Intra-Beam Scattering (IBS) at RHIC. Simulations are presented which give guidance on the configuration of the RF systems to mitigate IBS-induced emittance growth. In addition, simulated growth rates are compared with measured emittance evolution at injection, which shows better agreement in longitudinal than transverse dimension. The results in this report will help us better understand the emittance evolution for current RHIC operations and for future operations (eRHIC).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA050 RHIC Polarized Proton Operation for 2017 2188
 
  • V.H. Ranjbar, P. Adams, Z. Altinbas, E.C. Aschenauer, G. Atoian, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, M.R. Costanzo, T. D'Ottavio, K.A. Drees, P.S. Dyer, A.V. Fedotov, W. Fischer, C.J. Gardner, D.M. Gassner, X. Gu, C.E. Harper, M. Harvey, T. Hayes, J. Hock, H. Huang, R.L. Hulsart, J.P. Jamilkowski, T. Kanesue, N.A. Kling, J.S. Laster, C. Liu, Y. Luo, D. Maffei, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, T.A. Miller, M.G. Minty, C. Montag, J. Morris, G. Narayan, C. Naylor, S. Nemesure, P. Oddo, M. Okamura, S. Perez, A.I. Pikin, A. Poblaguev, S. Polizzo, V. Ptitsyn, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, Z. Sorrell, D. Steski, S. Tepikian, R. Than, P. Thieberger, J.E. Tuozzolo, G. Wang, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, W. Zhang, B. van Kuik
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract number DE-SC0012704
The 2017 operation of the Relativistic Heavy Ion Collider (RHIC) involved the running of only a single experiment at STAR with PHENIX offline in the process of the upgrade to sPHENIX. For this run there were several notable changes to machine operations. These included, transverse polarization, luminosity leveling, a new approach to machine protection and the development of new store and ramped lattices. The new 255 GeV store lattice was designed to both accommodate the necessary phase advance between the e-lens and IP8 for testing and to maximize dynamic aperture. The new lattices on the ramp were designed to maximize polarization transmission during the three strong intrinsic spin resonances crossings. Finally we are also commissioning new 9 MHz RF cavities during this run.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK049 Overview of the eRHIC Ring-Ring Design 3035
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, A.V. Fedotov, W. Fischer, W. Guo, Y. Hao, A. Hershcovitch, Y. Luo, F. Méot, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, S. Seletskiy, T.V. Shaftan, V.V. Smaluk, S. Tepikian, D. Trbojevic, E. Wang, F.J. Willeke, H. Witte, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The ring-ring electron-ion collider eRHIC aims at an electron-ion luminosity in the range from 1032 to 1033cm-2sec-1 over a center-of-mass energy range from 20 to 140GeV. To minimize the technical risk the design is based on existing technologies and beam parameters that have already been achieved routinely in hadron-hadron collisions at RHIC, and in electron-positron collisions elsewhere. This design has evolved considerably over the last two years, and a high level of maturity has been achieved. We will present the latest design status and give an overview of studies towards evaluating the feasibility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)