Author: Fan, K.
Paper Title Page
MOPIK034 The New High Field Injection Septum Magnet System for Main Ring of J-PARC 576
 
  • T. Shibata, K. Ishii, H. Matsumoto, N. Matsumoto, T. Sugimoto
    KEK, Ibaraki, Japan
  • K. Fan
    HUST, Wuhan, People's Republic of China
 
  We are improving the Main Ring (MR) for beam power of 750 kw which is the first goal of J-PARC. The repetition period of the fast extraction must be short to 1.3 second from the current period of 2.48 second for the improvement of the beam power. We exchanged a injection septum magnet which are located at the injection line from RCS to MR and its power supply in summer of 2016. It was necessary to exchange, because the previous injection septum system can not be operated with 1.3 second repetition. The development of the new injection septum magnet and its power supply in which the maximum repetition are 1Hz and the order od the leakage field are 10-4 of the gap field were completed in 2016. In this presentation, we will report the final results of its performance, e.g. the magnetic fields and stability of the output current and field, and the beam performance after installation in MR with the new injection magnet.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB086 Design Study of a High-Intensity, Low-Energy Electron Gun 1517
 
  • Q. Zhang, K. Fan, T. Hu, K.F. Liu, Z.Y. Mei
    HUST, Wuhan, People's Republic of China
 
  An independently-tunable-cells thermionic RF gun (ITC-RF gun) is adopted in a compact FEL-THz facility due to its compactness, low-cost and high intensity. An electron gun is required to generate maximum beam current of 3.2 A at low energy of 15keV for the ITC-RF gun, which creates difficulties for the design of electron gun because of the strong space charge effect. A double-anode gridded gun structure is adopted that controls the beam current easily while maintains the energy dispersion less than 0.5%, with high perveance and high compression ratio. CST code has been used extensively for design optimization, which includes electrode shape, influences of grid, installation errors. A measurement scheme is also proposed for key parameters verification. Beam current, emittance and energy dispersion can be measured.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA081 Topology Optimization for a Superconducting Cyclotron Main Magnet 3446
SUSPSIK109   use link to see paper's listing under its alternate paper code  
 
  • L.G. Zhang, K. Fan, S. Hu, L.X.F. Li, Z.Y. Mei, B. Qin, Z.J. Zeng
    HUST, Wuhan, People's Republic of China
  • W. Chen
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People's Republic of China
 
  Main magnet is the heaviest component in a superconducting cyclotron, which occupies a large amount of cost. Topology optimization method is implanted to minimize the weight of main magnet while keep the field performance, which will make significant economic benefit. Due to the powerful superconducting coils, the main magnet is driven into saturation, and the nonlinear effect of the material must be considered. If the ordinary standard density method is used for the main magnet structure optimization, the nonlinear B-H relation have to be interpolated and the sensitivity analysis is very complicated. In this paper, a proper 2D model is established and the optimization formulation is given using standard density method. Then, the optimized topology of the main magnet for a 250MeV superconducting proton cyclotron is designed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA109 Design and Fuild-Solid-Heat Coupling Analysis of an Electrostatic Deflector for Hust SCC250 Proton Therapy Facility 4713
 
  • S. Hu, K. Fan, L.X.F. Li, Z.Y. Mei, Z.J. Zeng, L.G. Zhang
    HUST, Wuhan, People's Republic of China
 
  The study of proton therapy equipment has earned more and more attention in recent years in China. A superconducting cyclotron based proton therapy facility is being developed for/at Huazhong University of Science and Technology (HUST). The proton beam is extracted by means of electrostatic deflectors followed by a series of magnetic channels. This paper introduces the design of an electrostatic deflector, including the structure optimization and the material selections. In order to minimize the risk of destruction caused by the proton beam loss, fluid-solid-heat coupling analysis for the deflector has been conducted by applying computational fluid dynamics (CFD) on ANSYS 16.0 software. The maximum temperatures of the septum in various cases of cooling water speed, septum thickness and material have been investigated respectively. The result based on thermal analysis will give us a valuable reference to choose a suitable configuration for the deflector.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA111 Central Region Design for a Superconducting Cyclotron in the HUST Proton Therapy Facility 4716
SUSPSIK116   use link to see paper's listing under its alternate paper code  
 
  • Z.Y. Mei, K. Fan, S. Hu, L.X.F. Li, Z.J. Zeng, L.G. Zhang
    HUST, Wuhan, People's Republic of China
 
  A 250 MeV isochronous superconducting cyclotron was adopted in the HUST proton therapy facility. Since the proton beam quality is often limited by the parameters of the central region, special care is given to the design and optimization of the central region to obtain a qualified proton beam using for treatment. An internal proton PIG source with constant arc current is adopted to meet the stability requirements of the beam. Furthermore, a puller followed by an adjustable slit and a fixed vertical collimator are installed to maintain a good centering and vertical focusing beam with maximum intensity. In order to meet the requirement of the intensity modulated proton therapy (IMPT), a vertical kicker is used just followed the puller. The central region structure is optimized iteratively with the simulation results of the OPERA3D and the CYCLONE code. An optimum central region structure has been obtained with RF phase acceptance is around 24°. This paper presents the design parameters of the central region and the results of the proton beam simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA111  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA112 Progress of the Beamline and Energy Selection System for HUST Proton Therapy Facility 4719
 
  • B. Qin, Q.S. Chen, K. Fan, M. Fan, X.Y. Fang, D. Li, Z.K. Liang, K.F. Liu, X. Liu, P. Tan, J. Yang
    HUST, Wuhan, People's Republic of China
  • W. Chen
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People's Republic of China
 
  Funding: Work supported by The National Key Research and Development Program of China, with grant No. 2016YFC0105305
HUST proton therapy facility is a 5 years National Key Research and Development Program of China. This facil-ity is based on an isochronous superconducting cyclotron with two gantry treatment-rooms and one fixed beamline treatment station. The status for physical and technical design of the beamline and Energy Selection System (ESS) will be introduced in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)