Author: Carlier, E.
Paper Title Page
TUPVA007 Impact of LHC and SPS Injection Kicker Rise Times on Lhc Filling Schemes and Luminosity Reach 2043
 
  • W. Bartmann, M.J. Barnes, J. Boyd, E. Carlier, A. Chmielinska, B. Goddard, G. Kotzian, C. Schwick, L.S. Stoel, D. Valuch, F.M. Velotti, V. Vlachodimitropoulos, C. Wiesner
    CERN, Geneva, Switzerland
 
  The 2016 LHC proton filling schemes generally used a spacing between injections of batches of bunches into SPS and LHC corresponding to the design report specification for the SPS and LHC injection kicker rise times, respectively. A reduction of the batch spacing can be directly used to increase luminosity without detrimental effects on beam stability, and with no increase in the number of events per crossing seen by the experiments. Measurements and simulations were performed in SPS and LHC to understand if a shorter injection kicker rise time and associated tighter batch spacing would lead to increased injection oscillations of the first and last bunches of a bunch train and eventually also a systematic growth of the transverse emittance. The results were used to define the minimum possible batch spacing for an acceptable emittance growth in LHC, with gains of reductions of about 10% possible in both machines. The results are discussed, including the potential improvement of the LHC luminosity for different filling schemes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA128 Performance of the CERN Injector Complex and Transmission Studies into the LHC during the Second Proton-Lead Run 2395
 
  • R. Alemany-Fernández, S.C.P. Albright, M.E. Angoletta, J. Axensalva, W. Bartmann, H. Bartosik, P. Baudrenghien, G. Bellodi, A. Blas, T. Bohl, E. Carlier, S. Cettour-Cave, K. Cornelis, H. Damerau, A. Findlay, S.S. Gilardoni, S. Hancock, A. Huschauer, M.A. Jebramcik, S. Jensen, J.M. Jowett, V. Kain, D. Küchler, A.M. Lombardi, D. Manglunki, T. Mertens, M. O'Neil, S. Pasinelli, Á. Saá Hernández, M. Schaumann, R. Scrivens, R. Steerenberg, H. Timko, V. Toivanen, G. Tranquille, F.M. Velotti, F.J.C. Wenander, J. Wenninger
    CERN, Geneva, Switzerland
 
  The LHC performance during the proton-lead run in 2016 fully relied on a permanent monitoring and systematic improvement of the beam quality in all the injectors. The beam production and characteristics are explained in this paper, together with the improvements realized during the run from the source up to the flat top of the LHC. Transmission studies from one accelerator to the next as well as beam quality evolution studies during the cycle at each accelerator, have been carried out and are summarized in this paper. In 2016, the LHC had to deliver the beams to the experiments at two different energies, 4 Z TeV and 6.5 Z TeV. The properties of the beams at these two energies are also presented  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK033 LHC Beam Dump Performance in View of the High Luminosity Upgrade 2999
 
  • C. Wiesner, W. Bartmann, C. Bracco, E. Carlier, L. Ducimetière, M.I. Frankl, M.A. Fraser, B. Goddard, T. Kramer, A. Lechner, N. Magnin, S. Mazzoni, M. Meddahi, V. Senaj
    CERN, Geneva, Switzerland
 
  The High Luminosity Large Hadron Collider (HL-LHC) project will increase the total beam intensity in the LHC by nearly a factor of two. Analysis and follow-up of recent operational issues as well as dedicated studies of the LHC Beam Dump System (LBDS) have been carried out to ensure the safe operation with HL-LHC parameters and to decide on possible hardware upgrades to meet the HL-LHC requirements. The fail-safe design must ensure the LBDS performance also for abnormal operation such as asynchronous beam dumps or failing dilution kickers. In this paper, we report on newly observed failure scenarios as the erratic firing of more than one dilution kicker, and discuss their consequences as well as possible mitigation measures in view of the high luminosity upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA105 Upgrading of Ageing CERN Underground Infrastructure to Fulfil the Space Requirements of New Facilities at CERN 3510
 
  • A. Martínez Sellés, E. Carlier, V. Di Murro, B. Goddard, E. Gschwendtner, F.J. Magnin, R.F. Morton, J.A. Osborne
    CERN, Geneva, Switzerland
  • V. Di Murro
    University of Cambridge, Cambridge, United Kingdom
 
  Particle accelerator technology is constantly being developed, and new equipment and machines replace the former ones to keep pushing the energy and intensity frontiers. Therefore, in order to meet the space requirements of new equipment, the infrastructure often needs to be modified, and given its rigid nature, this presents a challenge for the civil engineers to provide the needed space without compromising the safety and serviceability of the structures. In this paper two underground works are presented: a new cross-passage tunnel for the AWAKE experiment completed in 2014 and the future SPS Beam Dump. The challenges that must be faced are: (a) to make sure that the movements of the adjacent structures remain within admissible limits, (b) to design and execute the works such that the life span of the structure is not reduced, (c) To ensure the effectiveness of existing and new drainage systems during and after the works. For these purposes, in the frame of future tunnel asset management, the use of novel and conventional monitoring techniques plays a crucial role as it can predict in real time potential tunnel deformations which can lead, in the worst scenario, to tunnel failure  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)