Author: Blaskiewicz, M.
Paper Title Page
MOPVA141 Input RF Coupler Design for Energy Compensator Cavity in eRHIC 1184
 
  • C. Xu, S. Bellavia, I. Ben-Zvi, M. Blaskiewicz, Y. Hao, K.S. Smith, R. Than, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
This report gives a detail design of a 1.3 GHz input coupler for second harmonic cavity for eRHIC project. This coupler is designed to transmit 200KW CW RF to the cavity to compensate the synchrotron radiation loss. This report include RF and thermal simulation for this design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA141  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOCB3 CBETA - Cornell University Brookhaven National Laboratory Electron Energy Recovery Test Accelerator 1285
 
  • D. Trbojevic, S. Bellavia, J.S. Berg, M. Blaskiewicz, S.J. Brooks, K.A. Brown, W. Fischer, F.X. Karl, C. Liu, G.J. Mahler, F. Méot, R.J. Michnoff, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, B.M. Dunham, R.G. Eichhorn, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, B.K. Heltsley, G.H. Hoffstaetter, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, C.E. Mayes, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    JLab, Newport News, Virginia, USA
  • D. Jusic, J.R. Patterson
    Cornell University, Ithaca, New York, USA
 
  Funding: New York State Energy Research and Development Authority (NYSERDA)
Cornell's Lab of Accelerator-based Sciences and Education (CLASSE) and the Collider Accelerator Department (BNL-CAD) are developing the first SRF multi-turn energy recovery linac with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack. The existing injector and superconducting linac at Cornell University are installed together with a single NS-FFAG arcs and straight section at the opposite side of the the linac to form an Electron Energy Recovery (ERL) system. Electron beam from the 6 MeV injector is injected into the 36 MeV superconducting linac, and accelerated by four successive passes: from 42 MeV up to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase. Energy is recovered and reduced to the initial value of 6 MeV with 4 additional passes. There are many novelties: a single NS-FFAG structure, made of permanent magnets, brings electrons with four different energies back to the linac. A new adiabatic NS-FFAG arc-to-straight section merges 4 separated orbits into a single orbit in the straight section.
 
slides icon Slides TUOCB3 [41.888 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOCB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB143 Dependence of LEReC Beam Energy Spread on Photocathode Laser Modulation 1669
 
  • S. Seletskiy, M. Blaskiewicz, A.V. Fedotov, D. Kayran, J. Kewisch, M.G. Minty, B. Sheehy, Z. Zhao
    BNL, Upton, Long Island, New York, USA
  • B. Sheehy
    Sheehy Scientific Consulting, Wading River, New York, USA
 
  Present requirements to the photocathode DC gun of the low energy RHIC electron cooling (LEReC) project is to produce 100 ps long bunch of electrons with 130 pC charge. The laser pulse of required length will be produced with the stacking of multiple few picosecond long sub-pulses. Depending on the choice of the laser sub-pulse length and on the relative delay between these sub-pulses one can obtain laser pulse with various longitudinal intensity modulations. The longitudinal modulation of laser intensity creates longitudinal modulation of electron bunch charge. Such modulation is known to cause the growth of e-beam uncorrelated energy spread in photoinjectors - the effect we would like to avoid. In this paper we estimate growth of e-beam energy spread due to its initial density modulation and set requirements to the maximum allowable depth of longitudinal modulation of photocathode laser intensity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB143  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB145 Alignment of Electron and Ion Beam Trajectories in Non-Magnetized Electron Cooler 1672
 
  • S. Seletskiy, M. Blaskiewicz, A.V. Fedotov, D. Kayran, J. Kewisch, R.J. Michnoff, I. Pinayev
    BNL, Upton, Long Island, New York, USA
 
  The cooling section (CS) of the low energy RHIC electron cooler (LEReC) consists of two 20 m long parts each containing six solenoids with trajectory correctors placed inside the solenoids and the BPMs located downstream of each solenoid. The solenoids are used to minimize the scalloping of the electron beam envelope. To obtain the cooling it is required to keep the overall RMS electron angles in the cooling section below 100 urad. Possible mechanical misalignment, such as shift and inclination of the CS solenoids can cause an unacceptable misalignment of the e-beam trajectory with respect to the ideal trajectory set by ions. Therefore, it is critical to perform a beam based alignment of the CS solenoids. In this paper we suggest a procedure for such an alignment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB145  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA046 Beam Energy Scan With Asymmetric Collision at RHIC 2175
 
  • C. Liu, J.G. Alessi, E.N. Beebe, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, D.M. Gassner, X. Gu, Y. Hao, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, P.F. Ingrassia, J.P. Jamilkowski, J.S. Laster, V. Litvinenko, Y. Luo, M. Mapes, G.J. Marr, A. Marusic, G.T. McIntyre, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, I. Pinayev, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, T. Roser, P. Sampson, J. Sandberg, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, J.E. Tuozzolo, G. Wang, Q. Wu, A. Zaltsman, K. Zeno, S.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A beam energy scan of deuteron-gold collision, with center-of-mass energy at 19.6, 39, 62.4 and 200.7 GeV/n, was performed at the Relativistic Heavy Ion Collider in 2016 to study the threshold for quark-gluon plasma (QGP) production. The lattice, RF, stochastic cooling and other subsystems were in different configurations for the various energies. The operational challenges changed with every new energy. The operational experience at each energy, the operation performance, highlights and lessons of the beam energy scan are reviewed in this report.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA050 RHIC Polarized Proton Operation for 2017 2188
 
  • V.H. Ranjbar, P. Adams, Z. Altinbas, E.C. Aschenauer, G. Atoian, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, M.R. Costanzo, T. D'Ottavio, K.A. Drees, P.S. Dyer, A.V. Fedotov, W. Fischer, C.J. Gardner, D.M. Gassner, X. Gu, C.E. Harper, M. Harvey, T. Hayes, J. Hock, H. Huang, R.L. Hulsart, J.P. Jamilkowski, T. Kanesue, N.A. Kling, J.S. Laster, C. Liu, Y. Luo, D. Maffei, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, T.A. Miller, M.G. Minty, C. Montag, J. Morris, G. Narayan, C. Naylor, S. Nemesure, P. Oddo, M. Okamura, S. Perez, A.I. Pikin, A. Poblaguev, S. Polizzo, V. Ptitsyn, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, Z. Sorrell, D. Steski, S. Tepikian, R. Than, P. Thieberger, J.E. Tuozzolo, G. Wang, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, W. Zhang, B. van Kuik
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract number DE-SC0012704
The 2017 operation of the Relativistic Heavy Ion Collider (RHIC) involved the running of only a single experiment at STAR with PHENIX offline in the process of the upgrade to sPHENIX. For this run there were several notable changes to machine operations. These included, transverse polarization, luminosity leveling, a new approach to machine protection and the development of new store and ramped lattices. The new 255 GeV store lattice was designed to both accommodate the necessary phase advance between the e-lens and IP8 for testing and to maximize dynamic aperture. The new lattices on the ramp were designed to maximize polarization transmission during the three strong intrinsic spin resonances crossings. Finally we are also commissioning new 9 MHz RF cavities during this run.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA149 AGS Polarized Proton Operation Experience in RHIC Run17 2452
 
  • H. Huang, P. Adams, J. Beebe-Wang, M. Blaskiewicz, K.A. Brown, C.J. Gardner, C.E. Harper, C. Liu, F. Méot, J. Morris, A. Poblaguev, V.H. Ranjbar, D. Raparia, T. Roser, V. Schoefer, S. Tepikian, N. Tsoupas, K. Yip, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Imperfection and vertical intrinsic depolarizing resonances have been overcome by the two partial Siberian snakes in the Alternating Gradient Synchrotron (AGS). The relatively weak but numerous horizontal resonances are overcome by a pair of horizontal tune jump quads. 70% proton polarization has been achieved for 2·1011 intensity. Further gain can come from maintaining smaller transverse emittance with same beam intensity. The main efforts now are to reduce the transverse emittance in the AGS and Booster, as well as robust jump quads timing generation scheme. This paper summarizes the operation results in the injectors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA149  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK049 Overview of the eRHIC Ring-Ring Design 3035
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, A.V. Fedotov, W. Fischer, W. Guo, Y. Hao, A. Hershcovitch, Y. Luo, F. Méot, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, S. Seletskiy, T.V. Shaftan, V.V. Smaluk, S. Tepikian, D. Trbojevic, E. Wang, F.J. Willeke, H. Witte, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The ring-ring electron-ion collider eRHIC aims at an electron-ion luminosity in the range from 1032 to 1033cm-2sec-1 over a center-of-mass energy range from 20 to 140GeV. To minimize the technical risk the design is based on existing technologies and beam parameters that have already been achieved routinely in hadron-hadron collisions at RHIC, and in electron-positron collisions elsewhere. This design has evolved considerably over the last two years, and a high level of maturity has been achieved. We will present the latest design status and give an overview of studies towards evaluating the feasibility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)