Author: Benedikt, M.
Paper Title Page
MOPIK046 Phase Space Folding Studies for Beam Loss Reduction During Resonant Slow Extraction at the CERN SPS 615
 
  • L.S. Stoel, M. Benedikt, K. Cornelis, M.A. Fraser, B. Goddard, V. Kain, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The requested number of protons slow-extracted from the CERN Super Proton Synchrotron (SPS) for Fixed Target (FT) physics is expected to continue increasing in the coming years, especially if the proposed SPS Beam Dump Facility is realised. Limits on the extracted intensity are already being considered to mitigate the dose to personnel during interventions required to maintain the extraction equipment, especially the electrostatic extraction septum. In addition to other on-going studies and technical developments, a reduction of the beam loss per extracted proton will play a crucial role in the future performance reach of the FT experimental programme at the SPS. In this paper a concept is investigated to reduce the fraction of beam impacting the extraction septum by folding the arm of the phase space separatrix. Beam dynamics simulations for the concept are presented and compared to the phase space acceptance of the extraction channel. The performance potential of the concept at SPS is evaluated and discussed alongside the necessary changes to the non-linear optical elements in the machine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOCB1 Progress in the Design of Beam Optics for FCC-ee Collider Ring* 1281
 
  • K. Oide, K. Ohmi
    KEK, Ibaraki, Japan
  • M. Benedikt, H. Burkhardt, B.J. Holzer, A. Milanese, J. Wenninger, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.P. Blondel, M. Koratzinos
    DPNC, Genève, Switzerland
  • A.V. Bogomyagkov, E.B. Levichev, D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
  • M. Boscolo
    INFN/LNF, Frascati (Roma), Italy
 
  The beam optics for the FCC-ee collider has been updated: (a) the layout is adjusted to a new footprint of FCC-hh, (b) the design around the interaction point is refined considering a number of machine-detecor interface issues, (c) the arc lattice is refined taking realistic magnet designs into account, (d) the β* and betatron tunes are re-optimized according to recent results of the beam-beam simulations, and more. These changes make the collider design more realistic without performance degradation.  
slides icon Slides TUOCB1 [4.891 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOCB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA040 Overview of Design Development of FCC-hh Experimental Interaction Regions 2151
 
  • A. Seryi, J.L. Abelleira, E. Cruz Alaniz, L.J. Nevay, L. van Riesen-Haupt
    JAI, Oxford, United Kingdom
  • R.B. Appleby, H. Rafique
    UMAN, Manchester, United Kingdom
  • R.B. Appleby
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J. Barranco García, T. Pieloni
    EPFL, Lausanne, Switzerland
  • M. Benedikt, M.I. Besana, X. Buffat, H. Burkhardt, F. Cerutti, A. Langner, R. Martin, W. Riegler, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
  • M. Boscolo, F. Collamati
    INFN/LNF, Frascati (Roma), Italy
  • M. Hofer
    TU Vienna, Wien, Austria
  • L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • L. van Riesen-Haupt
    University of Oxford, Oxford, United Kingdom
 
  The experimental interaction region is one of the key areas that define the performance of the Future Circular Collider. In this overview we will describe the status and the evolution of the design of EIR of FCC-hh, focusing on design of the optics, energy deposition in EIR elements, beam-beam effects and machine detector interface issues.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK034 Progress in the FCC-ee Interaction Region Magnet Design 3003
 
  • M. Koratzinos, A.P. Blondel
    DPNC, Genève, Switzerland
  • M. Benedikt, F. Zimmermann
    CERN, Geneva, Switzerland
  • E.R. Bielert
    University of Illinois at Urbana-Champaign, Illinois, USA
  • A.V. Bogomyagkov, S.V. Sinyatkin, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • M. Boscolo
    INFN/LNF, Frascati (Roma), Italy
  • M. Dam
    NBI, København, Denmark
  • K. Oide
    KEK, Ibaraki, Japan
 
  The design of the region close to the interaction point of the FCC-ee experiments is especially challenging. The beams collide at an angle (±15mrad) in a region where the detector solenoid magnetic field is large. Moreover, the very low vertical β* of the machine necessitates that the final focusing quadrupoles are also inside this high field region. The beams should be screened from the effect of the detector solenoid field, and the emittance blow-up due to vertical dispersion in the interaction region should be minimized while leaving enough space for detector components. Crosstalk between the two final focus quadrupoles, only about 6 cm apart at the tip, should also be minimized. We present an update on the subject.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA033 Conceptual Design Considerations for a 1.3 TeV Superconducting SPS (scSPS) 3323
 
  • F. Burkart, W. Bartmann, M. Benedikt, B. Goddard, A. Milanese, J.S. Schmidt
    CERN, Geneva, Switzerland
 
  The Future Circular Collider for hadrons (FCC-hh) envisaged at CERN will require a High Energy Booster as injector. One option being studied is to reuse the 6.9 km circumference tunnel of the SPS to house a fast-ramping superconducting machine. This paper presents the conceptual design considerations for this superconducting single aperture accelerator (designated scSPS) which can be used to accelerate protons to an extraction energy of 1.3 TeV, both for FCC and for fixed target beam operation in CERN's North Area. As FCC injector this accelerator has to be used in a fast cycling mode to fulfil the FCC-hh requirements concerning filling time, which impacts directly the choice of magnet technology. The reliability and availability will also play important roles in the design, and the inclusion of a fixed target capacity also has significant implications for the lattice and layout. The cell design, magnet parameters, overall layout, design of the different insertion and performance estimates for specific applications will be presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)