

Progress in the Design of Beam Optics for FCC-ee Collider Ring Aravis

LHC

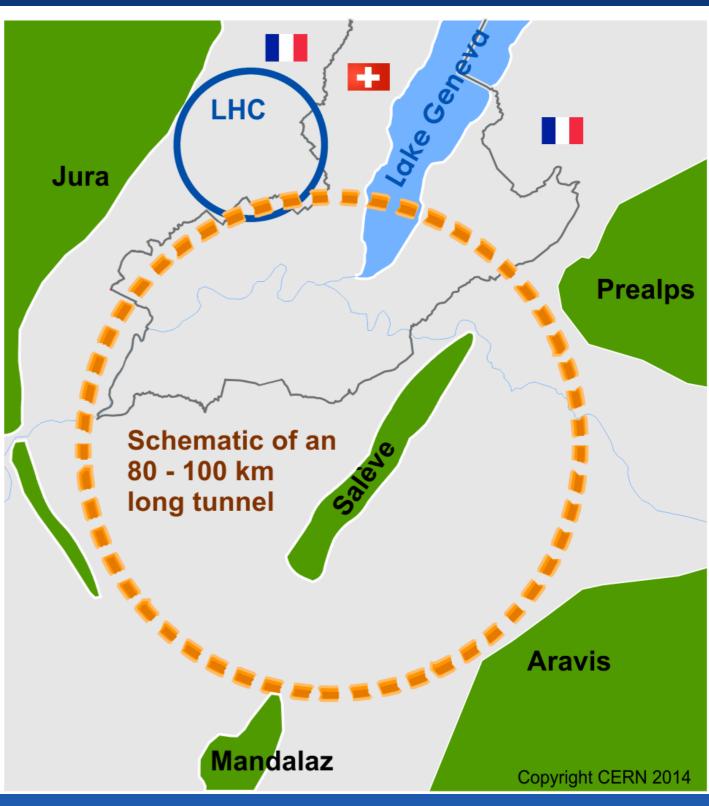
Schematic of an

Mandalaz

80 - 100 km Iona tunnel **Prealps**

Copyright CERN 2014

<u>K. Oide</u>, K. Ohmi, KEK, Tsukuba, Japan A. Bogomyagkov, E. Levichev, D. Shatilov, BINP SB RAS, Novosibirsk, Russia M. Benedikt, H. Burkhardt, B. Holzer, A. Milanese, J. Wenninger, F. Zimmermann, CERN, Geneva, Switzerland A. Blondel, M. Koratzinos, DPNC/Geneva University, Geneva, Switzerland M. Boscolo, INFN/LNF, Frascati, Italy

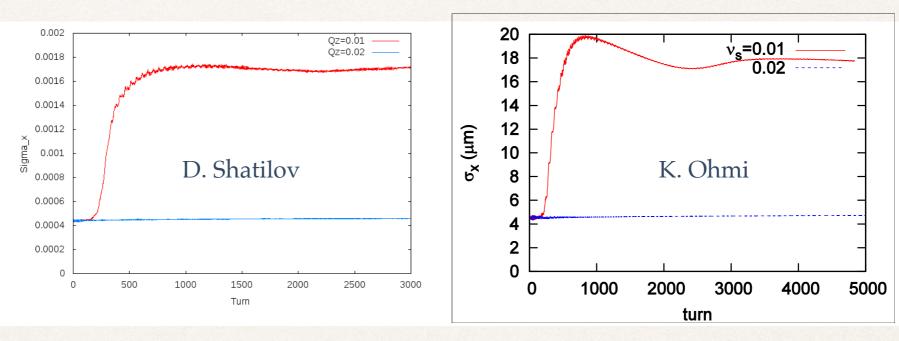

May 16, 2017 @ IPAC'17 TUOCB1

Many thanks to S. Aumon, E. Belli, B. Harer, P. Janot, R. Kersevan, D. El-Khechen, A. S. Langner, A. Novokhatski, S. Ogur, D. Schulte, J. Seeman, S. Sinyatkin, H. Sugimoto, M. Sullivan, T. Tydecks, D. Zhou

Future Circular Collider Study GOAL: CDR and cost review for the next ESU (2018)

International FCC collaboration (CERN as host lab) to study:

- *pp*-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements
- ~16 T \Rightarrow 100 TeV *pp* in 100 km
- 80-100 km infrastructure in Geneva area
- e⁺e⁻ collider (FCC-ee) as potential intermediate step / as a possible first step
- *p-e* (*FCC-he*) option, HE-LHC ...

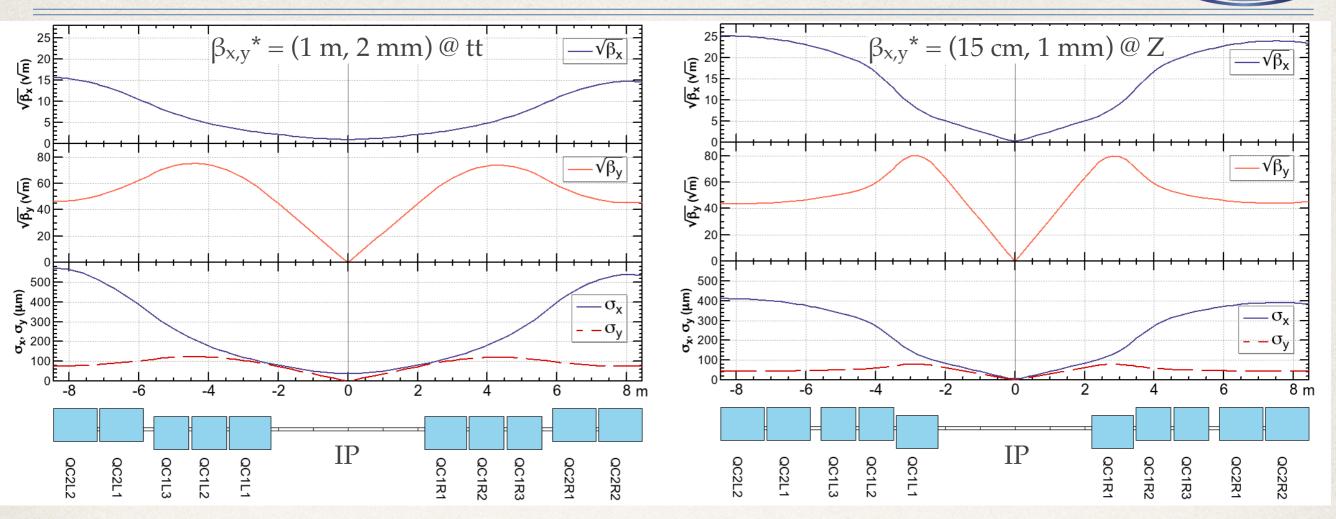


FCC-ee Beam Optics

- A baseline optics* for FCC-ee was once established in Oct. 2016 characterized by:
 - 100 km circumference, 2 IP/ring
 - common lattice for all energies
 - ✤ 90°/90° FODO cell in the arc with non-interleaved sextupole pairs
 - 30 mrad crossing angle at the IP, with the crab-waist scheme
 - local chromaticity correction for *y*-plane, incorporated with crab sextupoles
 - 100 MW total SR power for all energies
 - limit the SR toward the IP below 100 keV at 175 GeV, up to 450 m upstream
 - Tapering of magnets along the ring to compensate the effects of SR on orbit/optics
 - Sufficient dynamic aperture for beamstrahlung and top-up injection
- Motivations for change in 2017:
 - Mitigation of the coherent beam-beam instability at *Z*
 - Smaller β_x^*
 - $60^{\circ}/60^{\circ}$ cell in the arc, only at Z
 - Adopt the "Twin Aperture Quadrupole" scheme for arc quadrupoles
 - Fit the footprint to a new FCC-hh layout

Mitigation of Coherent Beam-Beam Instability at Z

- A new coherent instability in x-z plane was first found by K. Ohmi by FCC Week 2016 with a strong-strong beam-beam simulation.
- D. Shatilov confirmed their phenomenon by a completely independent simulation with a tunr-by-turn alternating quasi-strong-strong simulation. The result of these two agrees with each other very well.

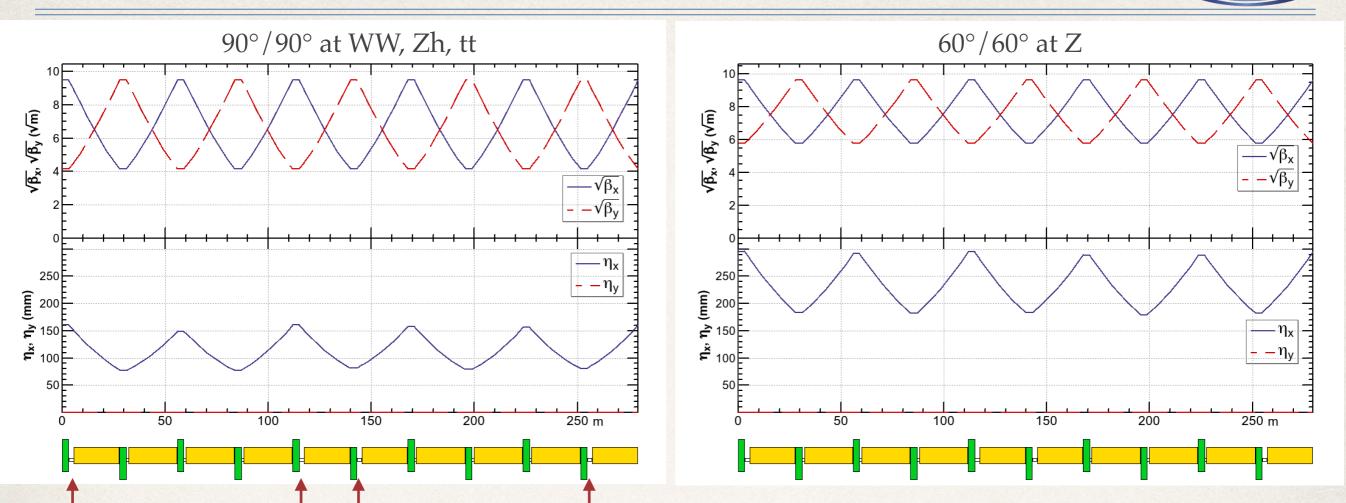


A semi-analytic scaling the threshold bunch intensity has been derived by K. Ohmi, *et al.**:

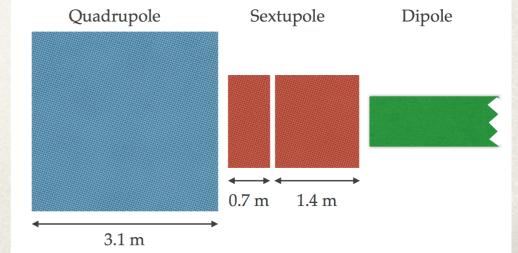
$$N_{\rm th} \propto rac{lpha_p \sigma_\delta \sigma_z}{eta_x^*}$$

- * Thus a smaller β_x^* and a larger momentum compaction α_p are favorable. The latter can be achieved by changing the phase advances at *Z*.
- We have reduced β_x^* to about 1/3, and increased α_p by a factor of 2.

Reduce βx^* , from 50 cm to 15 cm

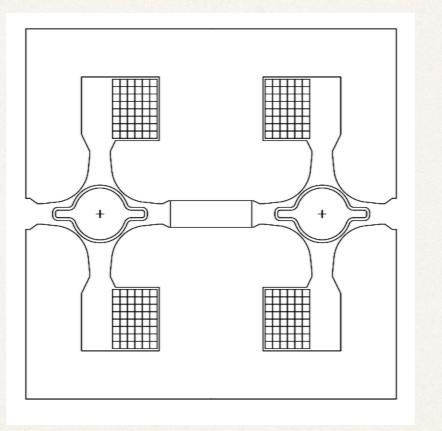


* Divide QC1 into three independent pieces, reverse the polarity at Z.


	L (m)	B' @ tt (T/m)	B' @ Z (T/m)		L (m)	B' @ tt (T/m)	B' @ Z (T/m)
QC1L1	1.2	-94.4	-96.3	QC1R1	1.2	-99.9	-97.2
QC1L2	1	-92.6	+50.3	QC1R2	1	-99.9	+51.2
QC1L3	1	-96.7	+9.8	QC1R3	1	-99.9	+12.0
QC2L1	1.25	+45.8	+6.7	QC2R1	1.25	+78.6	+7.3
QC2L2	1.25	+74.0	+3.2	QC2R2	1.25	+76.2	+7.2

* By this split the chromaticity and the peaks of $\beta_{x,y}$ around the IP are suppressed for the reduction of $\beta_{x,y}^*$ at Z to (1/7, 1/2) at tt.

60°/60° Arc FODO Cell at Z



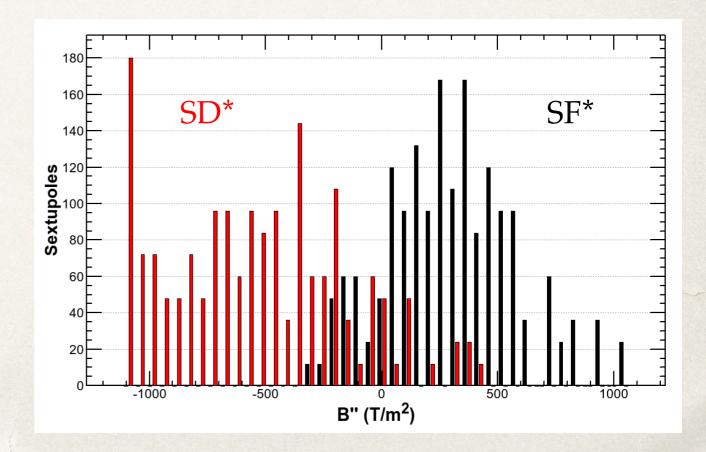
- * There are two lengths for the space for sextupoles between quads and dipoles.
- The longer ones † are used for sexts in the case of 90°/90° cell. Some of shorter ones are used in the 60°/60° cell, making -*I* transformation between a pair of sextupole.
- There are two lengths for the dipole, with the same field strength, thus a small irregularity is seen in the dispersion.
 Quadrupole Sextupole Dipole
- * The sextupole at the longer space consists of two slices.
- * Only the shorter one is used/inserted at Z.

Twin Aperture Quadrupole

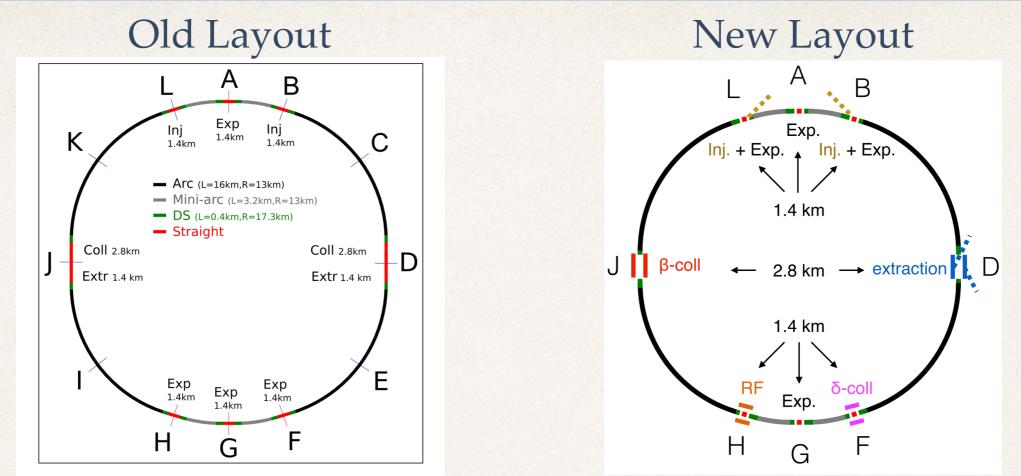
- An idea of "twin aperture quadrupole" has been developed by A. Milanese to save the power consumption of quadrupole magnets.
- * The currents in the magnet are always surrounded by iron to maximize the usage.

An example of the cross section of a twin aperture quadrupole for FCC-ee (A. Milanese).

The separation between two beams is 30 cm.


- The power consumption of the twin aperture quad: 22 MW at 175 GeV with Cu coil = half of single-aperture quads.
- * Dipoles are also "twin": power consumption = 17 MW at 175 GeV with Al bus bar.

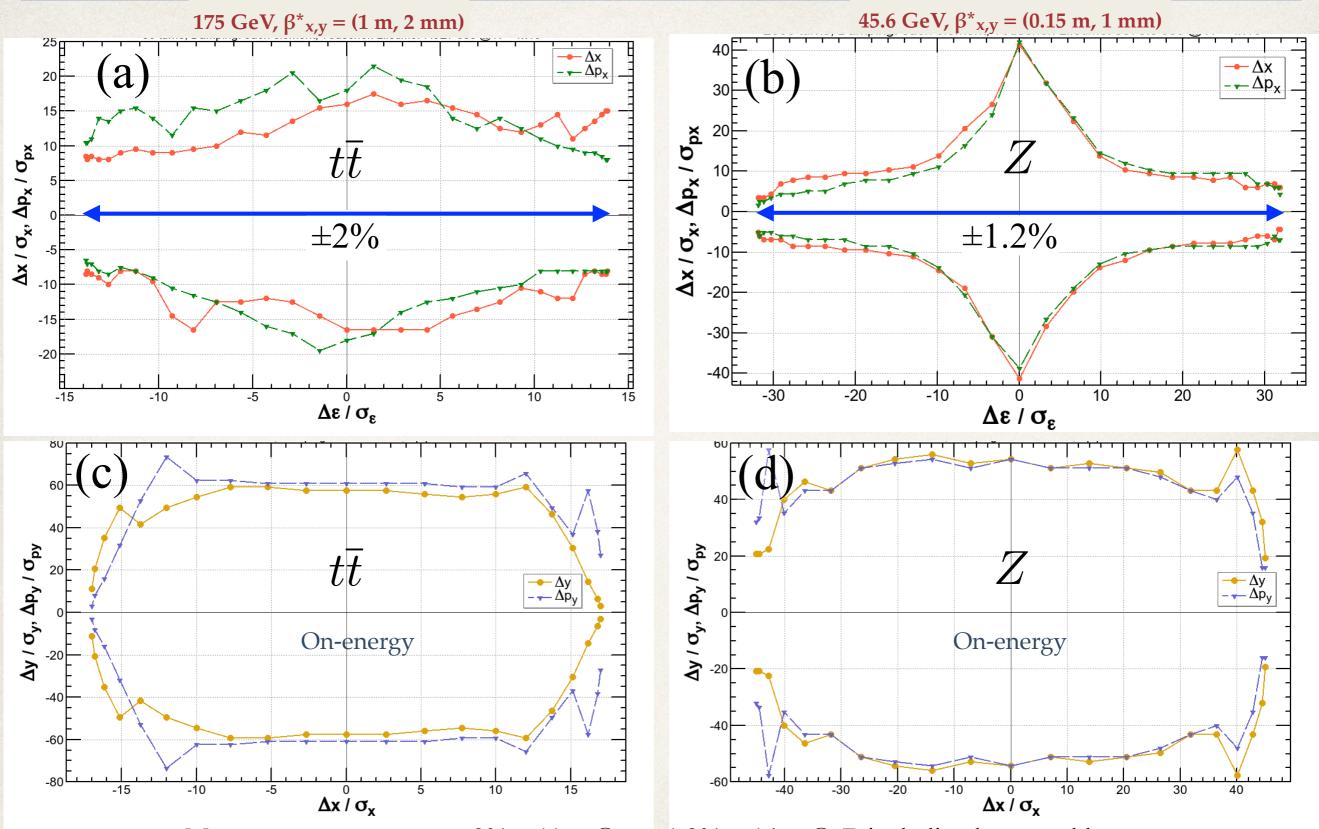
Parameters for Arc Magnets


		•
Beam Energy	[GeV]	175
Cell length	[m]	55.88
Length of dipole B1 / B1L	[m]	21.94 / 23.44
Bending angle/dipole	[mrad]	$2.042 \ / \ 2.183$
Dipole field	[mT]	54.3
Dipole packing factor in the arc	[%]	81.7
Number of arc dipoles / ring		2900
Arc quadrupole scheme		twin aperture
Quad length, QF/QD	[m]	3.1 / 3.1
Quad gradient, QF/QD	[T/m]	9.9 / -9.9
Number of quads / ring, QF/QD		1450 / 1450
Sext. length short (long), SF/SD	[m]	0.7 (1.4) / 0.7 (1.4)
Max. sext. $ B'' $, SF/SD	$[T/m^2]$	1117/ 1069
Number of sexts/ring, short (long), SF/SD		588 (588) / 588 (588)

- Although the sextupoles seem very strong, the average of them is still reasonable.
- ~10% of them may need a special dedicated architecture.

Fitting to the new geometry of FCC-hh

- The straight sections D&J have been shortened from 4.2 km to 2.8 km each.
- * The circumference has shortened by 2.2 km.
- * The location of sections B, F, H, L are slightly changed.


Parameters

Design		20	17	20	16	
Circumference [km]		97.	750	99.984		
Arc quadrupole scheme		twin aperture		single aperture		
Bend. radius of arc dipole	[km]	10.747		11.190		
Number of IPs / ring				2		
Crossing angle at IP	[mrad]		3	0		
Solenoid field at IP [T]		± 2				
ℓ^*	[m]	2.2				
Local chrom. correction		y-plane with crab-sext. effect				
RF frequency	[MHz]	400				
Total SR power	[MW]	100				
Beam energy	[GeV]	45.6	175	45.6	175	
SR energy loss/turn	[GeV]	0.0360	7.80	0.0346	7.47	
Long. damping time	[ms]	414	7.49	440	8.0	
Polarization time	$[\mathbf{S}]$	9.2×10^5	1080	9.2×10^{5}	1080	
Current/beam	[mA]	1390	6.4	1450	6.6	
Bunches/ring		70760	62	30180(91500)	81	
Particles/bunch	$[10^{10}]$	4.0	21.1	10(3.3)	17.0	
Arc cell		$60^{\circ}/60^{\circ}$	$90^{\circ}/90^{\circ}$	90°,	/90°	
Mom. compaction α_p	$[10^{-6}]$	14.79	7.31	6.	99	
Horizontal tune ν_x		269.14	389.08	387	7.08	
Vertical tune ν_y		267.22	389.18	387	.14	
Arc sext. families		208	292	29	92	
Horizontal emittance ε_x	[nm]	0.267	1.34	0.086	1.26	
$\varepsilon_y/\varepsilon_x$ at collision	[%]	0.38	0.2	1.2	0.2	
eta_x^*	[m]	0.15	1	0.5(1)	1 (0.5)	
β_y^*	[mm]	1	2	1 (2)	2(1)	
Energy spread by SR	[%]	0.038	0.144	0.038	0.141	
RF Voltage	[MV]	255	9500	88	9040	
Bunch length by SR	[mm]	2.1	2.4	2.6	2.4	
Synchrotron tune ν_z		-0.0413	-0.0684	-0.0163	-0.0657	
RF bucket height	[%]	3.8	10.3	2.3	11.6	
Luminosity/IP	$[10^{34}/cm^2s]$	121	1.32	210 (90)	1.3(1.5)	

Dynamic Aperture satisfies the requirements

Momentum acceptances: $\pm 2\% = 11\sigma_{\delta}$ (*a*) *tt*, $\pm 1.2\% = \pm 14\sigma_{\delta}$ (*a*) *Z*, including beamstrahlung. Tracking 50 turns (*a*) *tt*, 2550 turns at *Z*. Synchrotron motion, synchrotron radiation damping in dipoles & quads, tapering, Maxwellian fringes, kinematical terms, crab waist are included.

Effects included in the dynamic aperture survey

Effects	Included?	Significance		
Synchrotron motion	Yes	Essential		
Radiation loss in dipoles	Yes	Essential – improves the aperture		
Radiation loss in quadrupoles	Yes	Essential – reduces the aperture esp. at $t\bar{t}$		
Radiation fluctuation	after optimization	Essential		
Tapering	Yes	Essential		
Crab waist	Yes	transverse aperture is reduced by $\sim 20\%$		
Maxwellian fringes	Yes	small		
Kinematical terms	Yes	small		
Solenoids	Evaluated separately	minimal, if locally compensated		
Beam-beam effects for stored	after optimization (D. Zhou)	affects the lifetime for		
beam		$\beta_y^* = 1 \text{ mm at } t\bar{t}$		
Beam-beam effects for injected	Not yet	0		
beam				
Higher order fields / errors /	Not yet	Essential, development of		
misalignments		correction/tuning scheme is necessary		

Summary

- Modification of the beam optics for FCC-ee has been performed over the base line optics 2016:
 - Mitigation of the coherent beam-beam instability at Z
 - By achieving smaller β_x^*
 - Applying 60°/60° cell in the arc, only at Z, compatible with 90°/90° cell at higher energies.
 - Adopt the "Twin Aperture Quadrupole" scheme for arc quadrupoles
 - Fit the footprint to a new FCC-hh layout
- The resulting dynamic aperture is sufficient for the beamstrahlung and top-up injection.
- Please visit related posters:
 - Vertical Dispersion and Betatron Coupling Correction for FCC-ee, MOPIK097
 - Conceptual Design of a Pre-Booster Ring for the FCC e+e- Injector, **MOPVA029**
 - Beam Dynamics Simulation in Two Versions of New Photogun for FCC-ee Electron Injector Linac, **TUPAB011**
 - Optimisation of the Design of CERN's Future Circular Collider from a Civil Engineering Perspective, **TUPVA127**
 - Advanced Beam Dump for FCC-ee, WEPIK001
 - Challenges and Status of the Rapid Cycling Top-Up Booster for FCC-ee, WEPIK031
 - Progress in the FCC-ee Interaction Region Magnet Design, WEPIK034
 - Coupling Impedances and Collective Effects for FCC-ee, **THPAB020**
 - Coherent Beam-Beam Instability in Collision With a Large Crossing Angle, **THPAB021**