Paper | Title | Page |
---|---|---|
TUOBA01 | Beam Commissioning of SuperKEKB | 1019 |
|
||
In this report, we describe the machine operation in the first 3 months of the Phase 1 commissioning of SuperKEKB. The beam commissioning is smoothly going on. Vacuum scrubbing, the optics corrections and others are described. | ||
![]() |
Slides TUOBA01 [9.346 MB] | |
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOBA01 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOBA03 | Application of Differential Evolution Algorithm in Future Collider Optimization | 1025 |
|
||
Funding: Project U1332108 supported by NSFC. The dynamic aperture of is very limited due to the very small beta at IP in the SuperKEKB. In the storage ring based Higgs factory, the vertical beta function is not so small, but the much larger circumference enlarge the detuning term especially in horizontal direction. It is very hard to optimize the dynamic aperture in the future colliders. The particle loss may comes from different cause for different energy or different transverse coupling. The design of CEPC is still in process. The construction of SuperKEKB is nearly finished, but there still exist some problem which could reduce the performance. There are a few hundred parameters to be varied in the future colliders. The global optimization may be a good way to enlarge the dynamic aperture. Differential Evolution is a very simple population based, stochastic function minimizer which is very powerful at the same time. In this paper we show some application of the algorithm in the two machines. It has the potential to help us optimize the machine. |
||
![]() |
Slides TUOBA03 [2.289 MB] | |
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOBA03 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOY040 | Lattice Translation Between Accelerator Simulation Codes for Superkekb | 3077 |
|
||
To improve collaborative studies on beam dynamics for SuperKEKB between several labs, efforts have been made to translate the SAD lattices of SuperKEKB rings to the versions for other codes: AT, Bmad, MAD-X, and PTC. It turns out that lattice translations between these codes are not straightforward because of the complexity of the SuperKEKB lattices. In this paper, we describe our experiences of lattice translations, and present some results of benchmarks for the case of SuperKEKB. | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY040 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOR007 | Optics Measurements and Corrections at the Early Commissioning of SuperKEKB | 3782 |
|
||
We present experimental results of measurements and corrections of the optics at the early Phase-1 commissioning of SuperKEKB which is a positron-electron collider built to achieve the target luminosity of 8x1035 cm-2s-1. We have three stages; the Phase-1 is the commissioning of the machine without the final focus magnets and detector solenoid(no collision); the collision with the final focus system and the Belle II detector will be performed at the Phase-2 and Phase-3. The strategy for the luminosity upgrade is a novel "nano-beam'' scheme found elsewhere*. In order to achieve the target luminosity, the vertical emittance has to be reduced by corrections of machine error measured by orbit responses. The vertical emittance should be achieved to be less than 6 pm(0.2 % coupling) during the Phase-1 by fully utilizing correction tools of skew quadrupole-like coils wound on sextupole magnets and power supplies for each correction coil in quadrupole magnets. In addition to the linear optics, the optics for off-momentum particles is also studied to understand a dynamic aperture affects the Touschek lifetime.
* "SuperB Conceptual Design Report", INFN/AE-07/2, SLAV-R-856, LAL 07-15, (2007). |
||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR007 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOR022 | Design of Beam Optics for the FCC-ee Collider Ring | 3821 |
|
||
A design of beam optics will be presented for the FCC-ee double-ring collider. The main characteristics are 45 to 175 GeV beam energy, 100 km circumference with two IPs/ring, 30 mrad crossing angle at the IP, crab-waist scheme with local chromaticity correction system, and "tapering" of the magnets along with the local beam energy. An asymmetric layout near the interaction region suppresses the critical energy of synchrotron radiation toward the detector at the IP less than 100 keV, while keeping the geometry as close as to the FCC-hh beam line. A sufficient transverse/longitudinal dynamic aperture is obtained to assure the lifetime with beamstrahlung and top-up injection. The synchrotron radiation in all magnets, the IP solenoid and its compensation, nonlinearity of the final quadrupoles are taken into account. | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR022 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |