Author: Tollestrup, A.V.
Paper Title Page
MOPMW025 Vacuum RF Breakdown of Accelerating Cavities in Multi-Tesla Magnetic Fields 444
 
  • D.L. Bowring, A. Moretti, M.A. Palmer, D.W. Peterson, A.V. Tollestrup, K. Yonehara
    Fermilab, Batavia, Illinois, USA
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
  • A.V. Kochemirovskiy
    University of Chicago, Chicago, Illinois, USA
  • P.G. Lane, Y. Torun
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359.
Ionization cooling of intense muon beams requires the operation of high-gradient, normal-conducting RF structures within multi-Tesla magnetic fields. The application of strong magnetic fields has been shown to lead to an increase in vacuum RF breakdown. This phenomenon imposes operational (i.e. gradient) limitations on cavities in ionization cooling channels, and has a bearing on the design and operation of other RF structures as well, such as photocathodes and klystrons. We present recent results from Fermilab's MuCool Test Area (MTA), in which 201 and 805 MHz cavities were operated at high power both with and without the presence of multi-Tesla magnetic fields. We present an analysis of damage due to breakdown in these cavities, as well as measurements related to dark current and their relation to a conceptual model describing breakdown phenomena.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW030 High Powered Tests of Dielectric Loaded High Pressure RF Cavities for Use in Muon Cooling Channels 460
 
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
  • D.L. Bowring, A. Moretti, D.W. Peterson, A.V. Tollestrup, Y. Torun, K. Yonehara
    Fermilab, Batavia, Illinois, USA
  • A.V. Kochemirovskiy
    University of Chicago, Chicago, Illinois, USA
  • Y. Torun
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Funding: This work is supported by the Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359.
Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. Alumina of purities ranging from 96 to 99.8% was tested in a high pressure RF test cell at the MuCool Test Area at Fermilab. The results of breakdown studies with pure nitrogen gas, and oxygen-doped nitrogen gas indicate the peak surface electric field on the alumina ranges between 10 and 15 MV/m. How these results affect the design of a prototype cooling channel cavity will be discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW031 Beam Test of a Dielectric Loaded High Pressure RF Cavity for Use in Muon Cooling Channels 463
 
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
  • D.L. Bowring, A. Moretti, D.W. Peterson, A.V. Tollestrup, K. Yonehara
    Fermilab, Batavia, Illinois, USA
  • A.V. Kochemirovskiy
    University of Chicago, Chicago, Illinois, USA
  • Y. Torun
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Funding: This work is supported by the Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359.
Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. A 99.5% alumina ring was inserted in a high pressure RF test cell and subjected to an intense proton beam at the MuCool Test Area at Fermilab. The results of the performance of this dielectric loaded high pressure RF cavity will be presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR030 Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments 2733
 
  • K. Yonehara, A.V. Tollestrup, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • R.J. Abrams, R.P. Johnson, G.M. Kazakevich
    Muons, Inc, Illinois, USA
  • H.M. Dinkel
    University of Missouri, Columbia, Columbia, Missouri, USA
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE HEP STTR Grant DE-SC0013795.
MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at the MuCool Test Area at Fermilab.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)