Author: Tennant, C.
Paper Title Page
TUOBA02 ER@CEBAF - A High Energy, Multi-pass Energy Recovery Experiment at CEBAF 1022
 
  • F. Méot, I. Ben-Zvi, Y. Hao, P. Korysko, C. Liu, M.G. Minty, V. Ptitsyn, G. Robert-Demolaize, T. Roser, P. Thieberger, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • M.E. Bevins, S.A. Bogacz, D. Douglas, C.J. Dubbe, T.J. Michalski, F.C. Pilat, Y. Roblin, T. Satogata, M. Spata, C. Tennant, M.G. Tiefenback
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A high-energy, multiple-pass energy recovery (ER) experiment proposal, using CEBAF, is in preparation by a JLab-BNL collaboration. The experiment will be proposed in support of the electron-ion collider project (EIC) R&D going on at BNL. This new experiment extends the 2003, 1-pass, 1 GeV CEBAF-ER demonstration into a range of energy and recirculation passes commensurate with BNL's anticipated linac-ring EIC parameters. The experiment will study ER and recirculating beam dynamics in the presence of synchrotron radiation, provide opportunity to develop and test multiple-beam diagnostic instrumentation, and can also probe BBU limitations. This paper gives an overview of the ER@CEBAF project, its context and preparations.
 
slides icon Slides TUOBA02 [1.936 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOBA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOAB02 Conditions for CSR Microbunching Gain Suppression 1057
SUPSS056   use link to see paper's listing under its alternate paper code  
 
  • C.-Y. Tsai
    Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
  • S. Di Mitri
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • D. Douglas, R. Li, C. Tennant
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The coherent synchrotron radiation (CSR) of a high brightness electron beam traversing a series of dipoles, such as transport arcs, may result in phase space degradation. On one hand, the CSR can perturb electron transverse motion in dispersive regions along the beamline, causing emittance growth. On the other hand, the CSR effect on the longitudinal beam dynamics could result in microbunching gain enhancement. For transport arcs, several schemes have been proposed* to suppress the CSR-induced emittance growth. Similarly, several scenarios have been introduced** to suppress CSR-induced microbunching gain, which however mostly aim for linac-based machines. In this paper we try to provide sufficient conditions for suppression of CSR-induced microbunching gain along a transport arc, analogous to*. Several example lattices are presented, with the relevant microbunching analyses carried out by our semi-analytical Vlasov solver***. The simulation results show that lattices satisfying the proposed conditions indeed have microbunching gain suppressed. We expect this analysis can shed light on lattice design approach that could suppress the CSR-induced microbunching gain.
*D.Douglas et al, JLAB-ACP-14-1751, S.DiMitri et al, PRL (2013), R.Hajima, NIMA (2004), Y.Jiao et al, PRSTAB (2014)
**Z.Huang et al, PRSTAB (2004), Saldin et al, NIMA (2004)
***C.Tsai et al, FEL'15
 
slides icon Slides TUOAB02 [6.484 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOAB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)