Author: Song, Y.G.
Paper Title Page
MOPMY023 High Power Test of the RF System for the KOMAC MEBT 552
 
  • S.G. Kim, Y.-S. Cho, H.S. Kim, H.-J. Kwon
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
  • Y.G. Song
    KAERI, Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC (Korea Multi-purpose Accelerator Complex) operation fund of KAERI by MSIP (Ministry of Science, ICT and Future Planning)
A 100 MeV proton linac of the Korea multi-purpose accelerator complex (KOMAC) has been operated for providing a proton beam to users. RF systems of two medium energy beam transports (MEBT) have been designed to improve a beam quality. An operating frequency of the MEBT RF system is 350 MHz, and the required RF power is 44 kW for MEBT-1 and 18 kW for MEBT-2. The RF duty is 9% (1.5 ms, 60 Hz), and an RF stability of ±1% in amplitude and ±1° in phase is required. The RF system includes a low-level RF (LLRF) control system, a solid state RF amplifier (SSPA) as a 60 kW SSPA for MEBT-1 and a 30 kW SSPA for MEBT-2, a coaxial circulator, and 3-1/8" coaxial line components. A RF power test to the MEBT has been performed with 4 kW SSPA before the full power operation. The configuration and high power test results of the MEBT RF system are presented in this paper.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR050 Development of Web-based User Interface for Beam Status Monitoring of 100-MeV Proton Linac 2389
 
  • Y.G. Song, J.H. Kim
    KAERI, Gyeongbuk, Republic of Korea
  • Y.-S. Cho, H.-J. Kwon
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work was supported by the Ministry of Science, ICT & Future Planning of the Korean Government.
The goal of web-based user interface is to create a user interface which makes it easy and efficient to operate the KOMAC facility. A web-based user interface for a beam status monitoring of the KOMAC 100 MeV linac and beam lines has been developed with accessing Experimental Physics and Industrial Control System (EPICS) Channel Access (CA) protocol and relational database. Web service is combined with EPICS CA protocol. As a result, a beam operator and user can monitor the beam status in real time by using a web browser of remote PC or wireless device. In this paper, we are describing the implementation of web-based user interface for a beam status monitoring of the KOMAC proton linac.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR039 Development of 200 MHz Digital LLRF System for the 1 MeV/n RFQ at KOMAC 2758
 
  • H.S. Jeong, T.S. Ahn, Y.-S. Cho, H.S. Kim, S.G. Kim, H.-J. Kwon
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
  • Y.G. Song
    KAERI, Daejon, Republic of Korea
 
  KOMAC (Korea Multi-purpose Accelerator Complex) has a plan to develop the multipurpose ion irradiation system. This system includes the ion source, LEBT, RFQ and MEBT systems to transport ion particles to the target. In particular, the RFQ (Radio Frequency Quadrupole) system should receive 200 MHz RF within 1% amplitude error stability. To supply stable 200 MHz RF signal to the RFQ cavity, the LLRF (Low-Level Radio Frequency) system should be controlled through a control system which implemented using commercial digital board. This 1 MeV/n RFQ LLRF system has a concept to minimize the number of the analog components for minimizing the control error. For this, the FPGA (Field Programmable Gate Array) in the digital board will control the frequency of the output sinusoidal signal. In addition, this LLRF system applied the direct sampling, Non-IQ sampling, direct RF generation and fast IQ set update rate algorithm. In this presentation, the FPGA control logics of the LLRF digital board will be introduced. Also, the LLRF PI control logic test using 200 MHz dummy cavity will be described.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW019 Resonant Frequency Control with RCCS for the KOMAC Proton Linac 435
 
  • D.H. Seo, Y.-S. Cho, H.S. Kim, H.-J. Kwon, K.T. Seol, Y.G. Song
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work is supported by the Ministry of Science, ICT & Future Planning of the Korean Government.
The Resonance control cooling systems (RCCS) of 100 MeV proton linac at the Korea multi-purpose accelerator complex (KOMAC) have been operated for cooling the drift tubes (DT) and controlling the resonant frequency of the drift tube linac (DTL). The RCCS can maintain the cooling water temperature within ±0.1 °C by controlling 3-way valve opening. The RCCS has two types of control mode, the constant cooling water temperature control mode and the resonant frequency control mode. In the case of the resonant frequency control, the error frequency is measured in the low-level RF (LLRF) control system and the RCCS compensates the error frequency by controlling the cooling water temperature of DT with PID algorithm. In this paper, the operation results of the resonant frequency control with the RCCS as well as some modification of the LLRF system are presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR055 Solid Targetry for the Isotope Production Facility at the KOMAC 100 MeV Linac 1384
 
  • S.P. Yun, Y.-S. Cho, H.S. Kim, H.-J. Kwon, K.T. Seol, Y.G. Song
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
  • D.I. Kim
    KAERI, Daejon, Republic of Korea
 
  Funding: *This work was supported by the Ministry of Science, ICT and Future Planning of the Korean Government.
The construction of the isotope production facility was recently completed on the 100 MeV proton linac at the KOMAC (Korea multi-purpose accelerator complex). To produce the Sr-82 and Cu-67, we have prepared the solid targetry which consist of target transportation system , target cooling system and a hot-cell for remote handling. The Isotope production targets are made of RbCl pellet and stainless steel cladding. For the proton beam irradiation, the targets are transported by target drive system which consist of drive chain and guide rail by remotely. In this paper, we will report the detailed design, fabrication and operation status of the solid targetry at the KOMAC isotope production facility.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY012 Implementation of Data Acquisition System for Operating Condition in the 100 Mev Proton Linac 4110
 
  • J.H. Kim, Y.-S. Cho, H.-J. Kwon, Y.G. Song
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: The Ministry of Science, ICT & Future Planning of the Korean Government.
The goal of data acquisition system is to provide an efficient user interface to analyze operating condition of the KOMAC linac. The KOMAC control system which is based on Experimental physics and Industrial Control System (EPICS) has been monitoring and archiving the operating condition using Channel Access (CA) protocol. A data acquisition system has been developed with Qt framework that accesses EPICS IOCS and MySQL database via EPICS CA protocol. The data acquisition system provides calibrated data and efficient function to analyze data easily. In this paper, we are describing the implementation of data acquisition system for operating condition in the 100-MeV proton linac.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)