Author: Salvant, B.
Paper Title Page
MOPMR027 Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements 296
SUPSS073   use link to see paper's listing under its alternate paper code  
 
  • M.N. Rihl, A. Alexopoulos, V. Baglin, C. Barschel, E. Bravin, G. Bregliozzi, N. Chritin, B. Dehning, M. Ferro-Luzzi, C. Gaspar, M. Giovannozzi, R. Jacobsson, L.K. Jensen, O.R. Jones, N.J. Jurado, V. Kain, M. Kuhn, B. Luthi, P. Magagnin, R. Matev, N. Neufeld, J. Panman, V. Salustino Guimaraes, B. Salvant, R. Veness, S. Vlachos
    CERN, Geneva, Switzerland
  • A. Bay, F. Blanc, S. Gianì, G.J. Haefeli, P. Hopchev, T. Nakada, B. Rakotomiaramanana, O. Schneider, M. Tobin, Q.D. Veyrat, Z. Xu
    EPFL, Lausanne, Switzerland
  • R. Greim, W. Karpinski, T. Kirn, S. Schael, G. Schwering, M. Wlochal, A. von Dratzig
    RWTH, Aachen, Germany
 
  Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.
* LHCb collaboration, Journal of Instrumentation, 9, P12005
** P. Hopchev in Proc. of IPAC 2014, June 15-20, 2014, Dresden Germany
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR008 Beam Induced RF Heating in LHC in 2015 602
 
  • B. Salvant, O. Aberle, M. Albert, R. Alemany-Fernandez, G. Arduini, J. Baechler, M.J. Barnes, P. Baudrenghien, O.E. Berrig, N. Biancacci, G. Bregliozzi, J.V. Campelo, F. Carra, F. Caspers, P. Chiggiato, A. Danisi, H.A. Day, M. Deile, D. Druzhkin, J.F. Esteban Müller, S. Jakobsen, J. Kuczerowski, A. Lechner, R. Losito, A. Masi, N. Minafra, E. Métral, A.A. Nosych, A. Perillo Marcone, D. Perini, S. Redaelli, F. Roncarolo, G. Rumolo, E.N. Shaposhnikova, J.A. Uythoven, C. Vollinger, A.J. Välimaa, N. Wang, M. Wendt, J. Wenninger, C. Zannini
    CERN, Geneva, Switzerland
  • M. Bozzo
    INFN Genova, Genova, Italy
  • J.F. Esteban Müller
    EPFL, Lausanne, Switzerland
  • N. Wang
    IHEP, Beijing, People's Republic of China
 
  Following the recurrent beam induced RF issues that perturbed LHC operation during LHC Run 1, a series of actions were put in place to minimize the risk that similar issues would occur in LHC Run 2: longitudinal impedance reduction campaign and/or improvement of cooling for equipment that were problematic or at the limit during Run 1, stringent constraints enforced on new equipment that would be installed in the machine, tests to control the bunch length and longitudinal distribution, additional monitoring of temperature, new monitoring tools and warning chains. This contribution reports the outcome of these actions, both successes as well as shortcomings, and details the lessons learnt for the future runs.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR009 The HL-LHC Impedance Model and Aspects of Beam Stability 606
 
  • N. Biancacci, K.S.B. Li, E. Métral, B. Salvant
    CERN, Geneva, Switzerland
 
  Funding: Research supported by the High Luminosity LHC project
The LHC upgrade to the HLLHC foresees new challenging operational scenarios from the beam dynamics point of view. In order to ensure good machine operation and performance, the machine impedance, among other possible sources of instabilities like beam-beam and electron cloud, needs to be carefully quantified profiting also from the current LHC operation. In this work we present the HLLHC impedance model mainly focusing on the contribution of low-impedance collimators and crab cavities: the first reduces the broad-band impedance baseline thanks to the higher jaw material conductivity, the second increases the machine luminosity at the price of increasing the coupled bunch stabilizing octupole current threshold. Other elements like the injection protection absorber (TDI) will be also discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR010 Impedance Measurements and Simulations on the TCTP and TDI LHC Collimators 610
 
  • N. Biancacci, F. Caspers, A. Grudiev, J. Kuczerowski, I. Lamas Garcia, A. Lechner, E. Métral, A. Passarelli, A. Perillo Marcone, B. Salvant, J.A. Uythoven
    CERN, Geneva, Switzerland
  • O. Frasciello, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • A. Mostacci
    Rome University La Sapienza, Roma, Italy
  • N. Mounet
    EPFL, Lausanne, Switzerland
 
  The LHC collimation system is a critical element for the safe operation of the LHC machine and is subject to continuous performance monitoring, hardware upgrade and optimization. In this work we will address the impact on impedance of the upgrades performed on the TDI injection protection collimator, where the absorber material has been changed to mitigate the device heating observed in machine operation, and on selected secondary (TCS) and tertiary (TCT) collimators, where beam position monitors (BPM) have been embedded for faster jaw alignment. Concerning the TDI, we will present the RF measurements performed before and after the upgrade, comparing the result to heating and tune shift beam measurements. For the TCTs, we will study how the higher order modes (HOM) introduced by the BPM addition have been cured by means of ferrite placement in the device. The impedance mitigation campaign has been supported by RF measurements whose results are in good agreement with GdfidL and CST simulations. The presence of undamped low frequency modes is proved not to be detrimental to the safe LHC operation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR011 Impedance Localization Measurements using AC Dipoles in the LHC 614
 
  • N. Biancacci, L.R. Carver, G. Papotti, T. Persson, B. Salvant, R. Tomás
    CERN, Geneva, Switzerland
 
  The knowledge of the LHC impedance is of primary importance to predict the machine performance and allow for the HL-LHC upgrade. The developed impedance model can be benchmarked with beam measurements in order to assess its validity and limit. This is routinely done, for example, moving the LHC collimator jaws and measuring the induced tune shift. In order to localize possible unknown impedance sources, the variation of phase advance with intensity between beam position monitors can be measured. In this work we will present the impedance localization measurements performed at injection in the LHC using AC dipoles as exciter as well as the underlying theory.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY058 Removing Known SPS Intensity Limitations for High Luminosity LHC Goals 989
 
  • E.N. Shaposhnikova, T. Argyropoulos, T. Bohl, P. Cruikshank, B. Goddard, T. Kaltenbacher, A. Lasheen, J. Perez Espinos, J. Repond, B. Salvant, C. Vollinger
    CERN, Geneva, Switzerland
 
  In preparation of the SPS as an LHC injector its impedance was significantly reduced in 1999 - 2000. A new SPS impedance reduction campaign is planned now for the High Luminosity (HL)-LHC project, which requires bunch intensities twice as high as the nominal one. One of the known intensity limitations is a longitudinal multi-bunch instability with a threshold 3 times below this operational intensity. The instability is presently cured using the 4th harmonic RF system and controlled emittance blow-up, but reaching the HL-LHC parameters cannot be assured without improving the machine impedance. Recently the impedance sources responsible for this instability were identified and implementation of their shielding and damping is foreseen during the next long shutdown (2019 - 2020) in synergy with two other important upgrades: amorphous carbon coating of (part of) the vacuum chamber against the e-cloud effect and rearrangement of the 200 MHz RF system. In this paper the strategy of impedance reduction is presented together with beam intensity achievable after its realisation. The potential effect of other proposals on remaining limitations is also considered.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW011 Current Status of Instability Threshold Measurements in the LHC at 6.5 TeV 1434
 
  • L.R. Carver, J. Barranco, N. Biancacci, X. Buffat, W. Höfle, G. Kotzian, T. Lefèvre, T.E. Levens, E. Métral, T. Pieloni, B. Salvant, C. Tambasco
    CERN, Geneva, Switzerland
  • N. Wang
    IHEP, Beijing, People's Republic of China
  • M. Zobov
    INFN/LNF, Frascati (Roma), Italy
 
  Throughout 2015, many measurements of the minimum stabilizing octupole current required to prevent coherent transverse instabilities have been performed. These measurements allow the LHC impedance model at flat top to be verified and give good indicators of future performance and limitations. The results are summarized here, and compared to predictions from the simulation code DELPHI.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW021 Roman Pot Insertions in High-Intensity Beams for the CT-PPS Project at LHC 1473
 
  • M. Deile, R. Bruce, A. Mereghetti, D. Mirarchi, S. Redaelli, B. Salvachua, B. Salvant, G. Valentino
    CERN, Geneva, Switzerland
 
  The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) at the LHC IP5 aims at exploring diffractive physics at high luminosity in standard LHC fills. It is based on 14 Roman Pots (RPs), designed to host tracking and time-of-flight detectors for measuring the kinematics of leading protons. To reach the physics goals, the RPs will finally have to approach the beams to distances of 15 beam σs (i.e. ~1.5 mm) or closer. After problems with showers and impedance heating in first high-luminosity RP insertions in 2012, the LS1 of LHC was used for upgrades in view of impedance minimisation and for adding new collimators to intercept RP-induced showers. In 2015 the effectiveness of these improvements was shown by successfully inserting the RPs in all LHC beam intensity steps to a first-phase distance of ~25 σs. This contribution reviews the measurements of debris showers and impedance effects, i.e. the data from Beam Loss Monitors, beam vacuum gauges and temperature sensors. The dependences of the observables on the luminosity are shown. Extrapolations to L=1034 cm-2 s-1 and smaller distances to the beam do not indicate any fundamental problems. The plans for 2016 are outlined.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW031 Towards Optimum Material Choices for the HL-LHC Collimator Upgrade 2498
 
  • E. Quaranta, A. Bertarelli, N. Biancacci, R. Bruce, F. Carra, E. Métral, S. Redaelli, A. Rossi, B. Salvant
    CERN, Geneva, Switzerland
  • F. Carra
    Politecnico di Torino, Torino, Italy
 
  The first years of operation at the LHC showed that collimator material-related concerns might limit the performance. In addition, the HL-LHC upgrade will bring the accelerator beyond the nominal performance through more intense and brighter proton beams. A new generation of collimators based on advanced materials is needed to match present and new requirements. After several years of R&D on collimator materials, studying the behaviour of novel composites with properties that address different limitations of the present collimation system, solutions have been found to fulfil various upgrade challenges. This paper describes the proposed staged approach to deploy new materials in the upgraded HL-LHC collimation system. Beam tests at the CERN HiRadMat facility were also performed to benchmark simulation methods and constitutive material models.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW030 Studies of Impedance-related Improvements of the SPS Injection Kicker System 3611
 
  • M.J. Barnes, A. Adraktas, M.S. Beck, G. Bregliozzi, H.A. Day, L. Ducimetière, J.A. Ferreira Somoza, B. Goddard, T. Kramer, C. Pasquino, G. Rumolo, B. Salvant, L. Sermeus, J.A. Uythoven, L. Vega Cid, W.J.M. Weterings, C. Zannini
    CERN, Geneva, Switzerland
  • F.M. Velotti
    EPFL, Lausanne, Switzerland
 
  The injection kicker system for the SPS consists of sixteen magnets housed in a total of four vacuum tanks. The kicker magnets in one tank have recently limited operation of the SPS with high-intensity beam: this is due to both beam induced heating in the ferrite yoke of the kicker magnets and abnormally high pressure in the vacuum tank. Furthermore, operation with the higher intensity beams needed in the future for HL-LHC is expected to exacerbate these problems. Hence studies of the longitudinal beam coupling impedance of the kicker magnets have been carried out to investigate effective methods to shield the ferrite yoke from the circulating beam. The shielding must not compromise the field quality or high voltage behaviour of the kicker magnets and should not significantly reduce the beam aperture: results of these studies, together with measurements, are presented. In addition results of tests to identify the causes of abnormal outgassing are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW033 Operational Experience of the Upgraded LHC Injection Kicker Magnets 3623
 
  • M.J. Barnes, A. Adraktas, G. Bregliozzi, S. Calatroni, H.A. Day, L. Ducimetière, B. Goddard, V. Gomes Namora, V. Mertens, B. Salvant, J.A. Uythoven, L. Vega Cid, W.J.M. Weterings, C. Yin Vallgren
    CERN, Geneva, Switzerland
 
  During Run 1 of the LHC the injection kicker magnets caused occasional operational delays due to beam induced heating with high bunch intensity and short bunch lengths. In addition, sometimes there were also sporadic issues with microscopic unidentified falling objects, vacuum activity and electrical flashover of the injection kickers. An extensive program of studies was launched and significant upgrades were carried out during long shutdown 1. These upgrades include a new design of a beam screen to both reduce the beam coupling impedance of the kicker magnet, and to significantly reduce the electric field associated with the screen conductors, hence decreasing the probability of electrical breakdown in this region. In addition new cleaning procedures were implemented and equipment adjacent to the injection kickers and various vacuum components were modified. This paper presents operational experience of the injection kicker magnets during Run 2 of the LHC and assesses the effectiveness of the various upgrades.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY019 LHC Injection Protection Devices, Thermo-mechanical Studies through the Design Phase 3698
 
  • I. Lamas Garcia, N. Biancacci, G. Bregliozzi, M. Calviani, M.I. Frankl, L. Gentini, S.S. Gilardoni, A. Lechner, A. Perillo-Marcone, B. Salvant, N.V. Shetty, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The TDI is a beam intercepting device installed on the two injection lines of the LHC. Its function is to protect the superconducting machine elements during injection in the case of a malfunction of the injection kickers. The TDIS, which will replace the TDI, is foreseen to be installed for high luminosity operation. Due to the higher bunch intensities and smaller beam emittances expected, and following the operational experiences of the TDI, a complete revision of the design of the jaws must be performed, with a main focus on the material selection. Furthermore, the new TDIS will also improve the TDI reliability by means of a robust design of the jaw positioning mechanism, the efficiency of the cooling circuit and by reducing its impedance. A simplified installation procedure and maintenance will also be an important requirement for the new design. This paper introduces the main characteristics of the TDI as LHC injection protection device, showing the needs and requirements for its upgrade. It also discusses the thermo-mechanical simulations that are supporting and guiding the design phase and the material selection, and describes the modifications to be implemented, so far, for this new device.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)