Author: Pilat, F.C.
Paper Title Page
TUOBA02 ER@CEBAF - A High Energy, Multi-pass Energy Recovery Experiment at CEBAF 1022
 
  • F. Méot, I. Ben-Zvi, Y. Hao, P. Korysko, C. Liu, M.G. Minty, V. Ptitsyn, G. Robert-Demolaize, T. Roser, P. Thieberger, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • M.E. Bevins, S.A. Bogacz, D. Douglas, C.J. Dubbe, T.J. Michalski, F.C. Pilat, Y. Roblin, T. Satogata, M. Spata, C. Tennant, M.G. Tiefenback
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A high-energy, multiple-pass energy recovery (ER) experiment proposal, using CEBAF, is in preparation by a JLab-BNL collaboration. The experiment will be proposed in support of the electron-ion collider project (EIC) R&D going on at BNL. This new experiment extends the 2003, 1-pass, 1 GeV CEBAF-ER demonstration into a range of energy and recirculation passes commensurate with BNL's anticipated linac-ring EIC parameters. The experiment will study ER and recirculating beam dynamics in the presence of synchrotron radiation, provide opportunity to develop and test multiple-beam diagnostic instrumentation, and can also probe BBU limitations. This paper gives an overview of the ER@CEBAF project, its context and preparations.
 
slides icon Slides TUOBA02 [1.936 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOBA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW012 Injection Optics for the JLEIC Ion Collider Ring 2445
 
  • V.S. Morozov, Y.S. Derbenev, F. Lin, F.C. Pilat, G.H. Wei, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y. Nosochkov, M.K. Sullivan, M.-H. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: * Work supported by the U.S. DOE Contract DE-AC02-76SF00515. ** Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The Jefferson Lab Electron-Ion Collider (JLEIC) will accelerate protons and ions from 8 GeV to 100 GeV. A very low beta function at the Interaction Point (IP) is needed to achieve the required luminosity. One consequence of the low beta optics is that the beta function in the final focusing (FF) quadrupoles is extremely high. This leads to a large beam size in these magnets as well as strong sensitivity to errors which limits the dynamic aperture. These effects are stronger at injection energy where the beam size is maximum, and therefore very large aperture FF magnets are required to allow a large dynamic aperture. A standard solution is a relaxed injection optics with IP beta function large enough to provide a reasonable FF aperture. This also reduces the effects of FF errors resulting in a larger dynamic aperture at injection. We describe the ion ring injection optics design as well as a beta-squeeze transition from the injection to collision optics.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW015 Evaluation and Compensation of Detector Solenoid Effects in the JLEIC 2454
 
  • G.H. Wei, F. Lin, V.S. Morozov, F.C. Pilat, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported also by the U.S. DOE Contract DE-AC02-76SF00515.
The JLEIC detector solenoid has a strong 3 T field in the IR area, and its tails extend over a range of several meters. One of the main effects of the solenoid field is coupling of the horizontal and vertical betatron motions which must be corrected in order to preserve the dynamical stability and beam spot size match at the IP. Additional effects include influence on the orbit and dispersion caused by the angle between the solenoid axis and the beam orbit. Meanwhile it affects ion polarization breaking the figure-8 spin symmetry. Crab dynamics further complicates the picture. All of these effects have to be compensated or accounted for. The proposed correction system is equivalent to the Rotating Frame Method. However, it does not involve physical rotation of elements. It provides local compensation of the solenoid effects independently for each side of the IR. It includes skew quadrupoles, dipole correctors and anti-solenoids to cancel perturbations to the orbit and linear optics. The skew quadrupoles and FFQ together generate an effect equivalent to adjustable rotation angle to do the decoupling task. Details of all of the correction systems are presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW016 Towards a Small Emittance Design of the JLEIC Electron Collider Ring 2457
 
  • F. Lin, Y.S. Derbenev, A. Hutton, V.S. Morozov, F.C. Pilat, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The electron collider ring of the Jefferson Lab Electron-Ion Collider (JLEIC) is designed to provide an electron beam with a small beam size at the IP for collisions with an ion beam in order to reach a desired high luminosity. For a chosen beta-star at the IP, electron beam size is determined by the equilibrium emittance that can be obtained through a linear optics design. This paper briefly describes the baseline design of the electron collider ring reusing PEP-II components and considering their parameters (such as dipole sagitta, magnet field strengths and acceptable synchrotron radiation power) and reports a few approaches to reducing the equilibrium emittance in the electron collider ring.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR053 Influence of Magnet Multipole Field Components on Beam Dynamics in the JLEIC Ion Collider Ring 3525
 
  • G.H. Wei, F. Lin, V.S. Morozov, F.C. Pilat, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Nosochkov, M.-H. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported also by the U.S. DOE Contract DE-AC02-76SF00515.
To get a luminosity level of a few 1033 cm-2ses−1 at all design points of the Jefferson Lab Electron Ion Collider (JLEIC) project, small β* values in both horizontal and vertical planes are necessary at the Interaction Point (IP) in the ion collider ring. This also means large β in the final focus area, chromaticity correction sections, etc. which sets a constraint on the field quality of magnets in large beta areas, in order to ensure a large enough dynamic aperture (DA). In this context, limiting multipole field components of magnets are surveyed to find a possible compromise between the requirements and what can be realistically achieved by a magnet manufacturer. This paper describes that work. Moreover, non-linear field dedicated correctors are also studied to provide semi-local corrections of specific multipole field components.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR054 Error Correction for the JLEIC Ion Collider Ring 3528
 
  • G.H. Wei, F. Lin, V.S. Morozov, F.C. Pilat, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Nosochkov, M.-H. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported also by the U.S. DOE Contract DE-AC02-76SF00515.
The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, and chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)