Author: Masuzawa, M.
Paper Title Page
TUOBA01 Beam Commissioning of SuperKEKB 1019
 
  • Y. Funakoshi, T. Abe, T. Adachi, K. Akai, Y. Arimoto, K. Egawa, Y. Enomoto, J.W. Flanagan, H. Fukuma, K. Furukawa, N. Iida, H. Iinuma, H. Ikeda, T. Ishibashi, M. Iwasaki, T. Kageyama, H. Kaji, T. Kamitani, T. Kawamoto, S. Kazama, M. Kikuchi, T. Kobayashi, K. Kodama, H. Koiso, M. Masuzawa, T. Mimashi, T. Miura, F. Miyahara, T. Mori, A. Morita, S. Nakamura, T.T. Nakamura, H. Nakayama, T. Natsui, M. Nishiwaki, K. Ohmi, Y. Ohnishi, T. Oki, S. Sasaki, M. Satoh, Y. Seimiya, K. Shibata, M. Suetake, Y. Suetsugu, H. Sugimoto, M. Tanaka, M. Tawada, S. Terui, M. Tobiyama, S. Uehara, S. Uno, X. Wang, K. Watanabe, Y. Yano, S.I. Yoshimoto, R. Zhang, D. Zhou, X. Zhou, Z.G. Zong
    KEK, Ibaraki, Japan
  • D. El Khechen
    LAL, Orsay, France
 
  In this report, we describe the machine operation in the first 3 months of the Phase 1 commissioning of SuperKEKB. The beam commissioning is smoothly going on. Vacuum scrubbing, the optics corrections and others are described.  
slides icon Slides TUOBA01 [9.346 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOBA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYA01 Beam Physics and Technical Challenges of the FRIB Driver Linac 2039
 
  • Y. Yamazaki, H. Ao, N.K. Bultman, F. Casagrande, C. Compton, K.D. Davidson, A. Facco, F. Feyzi, P.E. Gibson, T. Glasmacher, Z.Q. He, L.T. Hoff, K. Holland, M. Ikegami, S.M. Lidia, Z. Liu, G. Machicoane, F. Marti, S.J. Miller, D. Morris, J. Popielarski, L. Popielarski, G. Pozdeyev, T. Russo, K. Saito, S. Shanab, G. Shen, S. Stark, H. Tatsumoto, R.C. Webber, J. Wei, T. Xu, Y. Zhang, Q. Zhao, Z. Zheng
    FRIB, East Lansing, Michigan, USA
  • K. Dixon, V. Ganni
    JLab, Newport News, Virginia, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • K. Hosoyama, M. Masuzawa, K. Tsuchiya
    KEK, Ibaraki, Japan
  • M.P. Kelly, P.N. Ostroumov
    ANL, Argonne, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The FRIB driver linac accelerates all the stable ion beams including uranium over 200 MeV/u with a CW beam power of 400 kW in order to produce isotopes as rare as possible. Except for 0.5 MeV/u RFQ, the linac is making use of superconducting (SC) RF technology. The beam power, which is an order of 2.5 as high as those of existing SC heavy ion linac, gives rise to many technical challenges as well as beam physics related ones. In particular, the uranium beam loss power density is approximately 30 times as high as the proton one with the same beam energy per nucleon and the same beam power. For this reason, the machine protection system needs a special care. Another example of the technical challenges is to install beam focusing solenoid as close as possible to SC cavities in order to ensure the frequent beam focusing both longitudinally and transversely. The talk reviews all these challenges with development results of their mitigation as well as construction status.
 
slides icon Slides WEYA01 [16.820 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEYA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR005 Tunnel Level Variation in the SuperKEKB Interaction Region 3774
 
  • M. Masuzawa, T. Adachi, T. Kawamoto
    KEK, Ibaraki, Japan
 
  SuperKEKB is an electron-positron collider, which aims to achieve a peak luminosity 40 times higher than that of KEKB. The vertical beam sizes of both rings are squeezed down to 50 - 60 nm at the interaction point (IP), which accounts for a factor of 20 in the luminosity increase, and the beam currents are doubled from those of KEKB. Tunnel motion can be critical for realizing the collisions of such small beams. A Hydrostatic Leveling System (HLS), which consists of 18 sensors, was installed on both sides of the IP to monitor tunnel level variations continuously. Effects of heavy rain and installation of the radiation shield blocks on the tunnel floor level are clearly seen. The HLS data during construction and SuperKEKB commissioning are reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR006 SuperKEKB Main Ring Magnet System 3778
 
  • M. Masuzawa, K. Egawa, H. Iinuma, T. Kawamoto, S. Nakamura, Y. Ohsawa, T. Oki, R. Sugahara, N. Tokuda
    KEK, Ibaraki, Japan
 
  SuperKEKB is an electron-positroncollider, which aims to achieve a peak luminosity 40 times higher than that of KEKB by using the so-called 'nano-beam' scheme. A major upgrade to the Main Ring (MR) magnet system was needed to realize this scheme. The upgrade includes 1) new beam lines in the entire interaction region;2) replacement of the main dipole magnets in the positron ring; 3) a new layout of the wiggler sections in the positron ring, and newly added wiggler section in the electron ring, and; 4) sextupole magnets with tunable tilting tables to control the ratio of skew/normal sextupole components in the positron ring. More than 400 magnets were designed, fabricated, field-measured, installed in the tunnel and aligned in time for Phase 1 commissioning. Alignment of the MR magnets was challenging, since the survey network was destroyed by the Great East Japan Earthquake. Tunnel position changes during the magnet alignment work caused by construction of a new facilities building made the alignment work even more challenging. Construction of the MR magnet system and its first commissioning are reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)