Author: Marcellini, F.
Paper Title Page
WEPOR006 Demonstration of CLIC Level Phase Stability using a High Bandwidth, Low Latency Drive Beam Phase Feedforward System at the CLIC Test Facility CTF3 2673
 
  • J. Roberts, P. Burrows, G.B. Christian, C. Perry
    JAI, Oxford, United Kingdom
  • A. Andersson, R. Corsini, P.K. Skowroński
    CERN, Geneva, Switzerland
  • A. Ghigo, F. Marcellini
    INFN/LNF, Frascati (Roma), Italy
 
  Funding: Work supported by the European Commission under the FP7 Research Infrastructures project Eu-CARD, grant agreement no.~227579.
The CLIC acceleration scheme, in which the RF power used to accelerate the main high energy beam is extracted from a second high intensity but low energy beam, places strict requirements on the phase stability of the power producing drive beam. To limit luminosity loss caused by energy jitter leading to emittance growth in the final focus to below 1%, 0.2 degrees of 12 GHz, or 50 fs, drive beam phase stability is needed. A low-latency phase feedforward correction with bandwidth above 17.5 MHz will be used to reduce the drive beam phase jitter to this level. The proposed scheme corrects the phase using fast electromagnetic kickers to vary the path length in a chicane prior to the drive beam power extraction. A prototype of this system has been installed at the CLIC test facility CTF3 to prove its feasibility. The latest results from the system are presented, demonstrating phase stabilisation in agreement with simulations given the beam conditions and power of the kicker amplifiers. Necessary improvements in the phase monitor performance and optics corrections made to remove the phase-energy dependence via R56 in order to achieve this level of stability are also discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW052 Multimodal Interaction in the ALS Longitudinal Feedback Kicker RF Cavity 2965
 
  • S. De Santis, K.M. Baptiste, J.M. Byrd, S. Kwiatkowski, T.H. Luo, E.R. Sanmateo, C. Steier, C.A. Swenson
    LBNL, Berkeley, California, USA
  • F. Marcellini
    PSI, Villigen PSI, Switzerland
 
  Funding: The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
RF cavities are essential components in particle accelerators not only for beam acceleration, but also for control purposes (bunch lengthening/shortening, deflecting and crabbing, transverse and longitudinal kickers) and for beam diagnostics (BPM). Normally, only a single resonating mode is actively used, although other modes can be excited by the circulating beam. Cavities used as feedback longitudinal kickers are designed with an axial mode which, appropriately excited, provides a kick to the circulating bunches for maintaining beam stability. To provide the necessary bandwidth this mode has to be strongly damped resulting in quality factors of just a few units. In the longitudinal feedback kicker cavity just installed on the ALS we have detected a second axial mode which, although a few hundreds of MHz below the 1.4 GHz design mode, is also strongly damped and has a shunt impedance high enough to be appreciably excited by the feedback amplifier coupling to the first mode. In this paper we show bench measurements on the cavity and with beam during its commissioning and discuss the interaction of the two modes resulting in a modulation of shunt impedance and phase response.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)