Author: Liu, X.Y.
Paper Title Page
MOPMB039 Design of Bunch Length Measurement System at the IRFEL Using a Martin-Puplett Interferometer 178
 
  • T.Y. Zhou, X.Y. Liu, P. Lu, B.G. Sun, L.L. Tang, F.F. Wu, Y.L. Yang, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by the National Science Foundation of China (11575181, 11175173)
Electron bunch length measurement is of great significance for optimizing IRFEL performance. An optical autocorrelation system using coherent transition radiation (CTR) would be set up to measure the electron bunch length at the IRFEL. CTR can be occurred when short electron bunches traverse a vacuum-metal interface. A Martin-Puplett interferometer allowed measurement of the autocorrelation of the CTR signal. The basic principle and the main components of Martin-Puplett interferometer are elaborated in this paper.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB040 Design of the Beam Diagnostics System for a New IR-FEL Facility at NSRL 181
 
  • J.H. Wei, X.Y. Liu, P. Lu, B.G. Sun, L.L. Tang, F.F. Wu, Y.L. Yang, T.Y. Zhou, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China (21327901, 11105141, 11575181)
A new IR-FEL has been commissioned at NSRL. This facility provides a final electron energy from 20 to 70 MeV, beam bunch with a macro-pulse length of 5~10 μs and a general micro-pulse repetition rate of 238 MHz, pulsed radiation with up to 100 mJ at about 0.3%~3% FWHM bandwidth. So a diagnostics system is necessary to monitor the performance of the bunch and the character of the FEL radiation, such as the beam position and profile, emittance, energy spread, laser intensity, etc. The beam diagnostics system mainly consists of Flags, a diagnostics beam line, BPMs, pop-in monitors and a FEL monitor system. This paper introduces the construction of this diagnostics system.
Corresponding author: ylyang@ustc.edu.cn
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB041 Modified Trigger Mode of Streak Camera to Measure Bunch Longitudinal Distribution in HLS II 184
 
  • H. Li, X.Y. Liu, P. Lu, B.G. Sun, L.L. Tang, J.G. Wang, F.F. Wu, Y.L. Yang, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by the National Science Foundation of China (11575181, 11175173)
In Hefei Light Source, the streak camera was used to measure the bunch length and longitudinal distribution using synchronous light. As the RF frequency of HLS II was 204MHz, the streak camera worked at the frequency of 102MHz (half of 204MHz). Because of the bunch lengthening, the streak camera faced the problem, the streak image on the phosphor screen will overlap when the bunch length was above 200.5ps@5% linear error and 10% overlap. In order to solve this problem, an effective solution was to change the working frequency of the streak camera to 136MHz (two thirds of 204MHz), and then the streak image on the phosphor screen will overlap when the bunch length was above 285.6ps@5% linear error and 10% overlap. So a front-end electronic was needed before the synchronizing signals feed into the streak camera. The front-end electronic was designed to convert the 204MHz synchronizing signal to 136MHz.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB042 Design and Simulation of Button Beam Position Monitor for IR-FEL* 187
SUPSS072   use link to see paper's listing under its alternate paper code  
 
  • X.Y. Liu, P. Lu, B.G. Sun, L.L. Tang, F.F. Wu, Y.L. Yang, T.Y. Zhou, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: * Supported by the National Science Foundation of China (11575181, 11175173)
A new button-type beam position monitor(BPM) was designed for the IR-FEL project. Firstly, the longitudinal size of BPM needs to be short enough to save space because the entire machine of IR-FEL is very compact. And in the matter of installation problem, all four electrodes are deviated 30 degrees from the horizontal axis. Then, according to these two limited conditions and beam parameters, we builded up a simple model and did some simulated calculations to ensure a good performance of position resolution, which should be better than 50μm. The simulations include an estimation of induced signals in both time and frequency domains, horizontal and vertical sensitivities, mapping figures and so on. This button BPM will be manufactured in the near future and then we can do some off-line experiments to test it.
# Corresponding author (email: bgsun@ustc.edu.cn)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB043 Preliminary Research of HLS II BLM System 190
 
  • F.F. Wu, X.Y. Liu, P. Lu, B.G. Sun, L.L. Tang, J.G. Wang, Y.L. Yang, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • Y.K. Chen
    IHEP, Beijing, People's Republic of China
 
  Beam loss monitor system has been designed in many electron storages in order to indirectly measure lost electrons, which can be used to analysis beam loss mechanism and beam life. It can contribute to beam commissioning and improving stable operation of storage ring. According to lattice structure of the HLS II storage ring, 64 beam loss detectors have been located in the upper, lower, inner, outer side surfaces of vacuum chamber in the HLS II storage ring. Some preliminary researches based on the HLS II BLM system have been done. The results in successfully stable operation and unsuccessfully stable operation in beam commissioning stage were compared. Analysis of a sudden lost beam phenomenon were carried out.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW028 Applications of the Tune Measurement System of the HLS-II Storage Ring 2892
 
  • J.J. Zheng, C. Cheng, X.Y. Liu, B.G. Sun, L.L. Tang, F.F. Wu, Y.L. Yang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China (11105141, 11175173)
During the commissioning phase of the HLS-II storage ring, the betatron function, the natural chromaticity, the corrected chromaticity and the central RF frequency were measured using the Swept-Frequency-Exitation based tune measurement system. The betatron function was measured using the quadrupole modulation method. The natural chromaticity and the corrected chromaticity were measured using the dipole modulation method and the RF modulation method respectively. In addtion, the central RF frequency was measured using the sextupole modulation method, which can be viewed as a direct measure of the ring circumference. This paper describes the measurement details and presents the measurement results.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)