Author: Liao, C.Y.
Paper Title Page
MOPMR033 Characterization of Beam Properties Using Synchrotron Light at Taiwan Photon Source 316
 
  • C.Y. Liao, Y.-S. Cheng, K.T. Hsu, K.H. Hu, C.-C. Kuo, H.-J. Tsai, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) is a third-generation 3-GeV synchrotron light facility, located in National Synchrotron Radiation Research Center (NSRRC) at Hsinchu Science Park. After overcoming many challenges, the storage beam current attained 520 mA in 2015 December. The synchrotron light monitors, including X-ray and visible light, are important diagnostic tools to characterize the various machine conditions. The booster beam dynamics during ramping and the beam properties of the storage ring were studied with synchrotron light. The results of measurements are presented in this report.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR016 Impedance Study with Single Bunch Beam at Taiwan Photon Source 630
 
  • C.-C. Kuo, P.J. Chou, K.T. Hsu, K.H. Hu, C.C. Liang, C.Y. Liao, Z.K. Liu, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  The impedance at Taiwan Photon Source was investigated. The effects of bunch current such as a tune change, a synchronous phase shift and a bunch lengthening under operation conditions at various stages were measured; the machine impedances were deduced. This report presents the results with insertion devices in various configurations.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR017 First Year Performance of the TPS Booster Ring 634
 
  • H.-J. Tsai, P.J. Chou, K.T. Hsu, K.H. Hu, C.-C. Kuo, C.Y. Liao, Y.-C. Liu, G.-H. Luo, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is a 3-GeV low- emittance light source of circumference 518.4 m. The booster ring is in the same tunnel with the storage ring; its circumference at 496.8 m makes it the largest booster ring in operation in existing light sources. Since the successful commissioning at the end of 2014, the TPS booster ring has been optimized in performance for routine operation. In this paper, we present the system upgrade and the improvement of the ramping procedure to increase the capture and ramping efficiency of the beam charge, the characterization of the optics, etc.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW039 Preliminary Beam Loss Study of TPS during Beam Commissioning 2926
 
  • C.H. Huang, J. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, D. Lee, C.Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  Taiwan photon source (TPS) is a 3rd generation and 3 GeV synchrotron light source in NSRRC. Several types of beam loss monitors (BLMs) such as RadFETs and PIN-diode BLMs are installed in the storage ring to understand the beam loss distribution and mechanism during the injection, decay mode, top-up operation and beam trip. Several RadFETs are also installed around the inserting devices to study the beam loss near the linear scalar. The preliminary beam loss study using RadFETs are PIN-diode BLMs in the storage will be summarized in this report.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW040 Preliminary Beam Test for TPS Fast Orbit Feedback System 2930
 
  • P.C. Chiu, K.T. Hsu, K.H. Hu, C.H. Huang, C.Y. Liao
    NSRRC, Hsinchu, Taiwan
 
  TPS (Taiwan Photon Source) is a 3 GeV synchrotron light source which had be successfully commissioning with SRF up to 500 Amp in 2015 and scheduled to open user operation in 2016. As most of the 3rd generation light source, the fast orbit feedback system would be adopted to eliminate various disturbances and improve orbit stability. Due to the vacuum chamber material made of aluminum with higher conductivity and lower bandwidth, extra fast correctors mounted on bellows will be used for FOFB correction loop and DC correction of fast correctors would be transferred to slow ones and avoid fast corrector saturation. This report summarizes the infrastructure of the FOFB and the preliminary beam test is also presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY017 Design and Implementation of Embedded Applications with EPICS Support for Accelerator Controls 4122
 
  • Y.-S. Cheng, K.T. Hsu, K.H. Hu, C.H. Huang, D. Lee, C.Y. Liao
    NSRRC, Hsinchu, Taiwan
 
  Low-cost credit-card size SBCs (single-board computer) are with small footprint, powerful in CPU performance and rich interfaces solution to widely adopted for educational purposes and also suitable for small scale embedded applications. The card-size SBCs have been applied for several applications with EPICS support at the TPS control system environment as auxiliary supports which are not suitable to use standard platform in existed control system due to economics, simplicity, specialty view points. The more efforts of several implemented applications are summarized in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY018 Main Operation Improvements on Taiwan Light Source 4125
 
  • C.H. Kuo, H.H. Chen, H.C. Chen, K.T. Hsu, S.J. Huang, J.A. Li, C.Y. Liao, M.-C. Lin, Y.K. Lin, Y.-C. Liu
    NSRRC, Hsinchu, Taiwan
 
  With the beam energy of 1.5 GeV, the storage ring of Taiwan Light Source (TLS) in National Synchrotron Radiation Research Center (NSRRC) has provided research service to users for more than twenty years. It takes a lot of efforts to keep this accelerator reliable and to improve its stability. NSRRC has finished the construction and commissioning of the new 3-GeV accelerator Taiwan Photon Source (TPS) which will be opened to users with limited beam lines in 2016. On the other hand, TLS has 25 beamlines and still serves users very well as being benefited by its mature operation skills and continuous efforts on maintenance and system improvement. Main challenges and corresponding solutions on TLS operation in these recent years t are presented herein, together with the statistics on operation performance.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY019 Design and Implementation of Control Interface and Timing Support of TPS Phase-I Beamlines 4128
 
  • C.Y. Wu, J. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, C.H. Huang, D. Lee, C.Y. Liao
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) with low emittance provides extremely bright X-rays. Seven advanced phase-I beamlines of TPS are being constructed and commissioned. The control interfaces for a beamline or experimental station and support from the accelerator control system are designed and are being implemented. The beamline control interface and supports include a beamline interlock status monitor, accelerator timing transmission, broadcast of accelerator operating status, transmission of the beam-current reading and control of insertion devices. This report summarizes the efforts in implementing the beamline EPICS IOC and support from the accelerator control system during beamline commissioning in TPS phase-I.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)