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Abstract 
The Taiwan Photon Source (TPS) is a 3-GeV low- 

emittance light source of circumference 518.4 m. The 
booster ring is in the same tunnel with the storage ring; its 
circumference at 496.8 m makes it the largest booster ring 
in operation in existing light sources. Since the successful 
commissioning at the end of 2014, the TPS booster ring 
has been optimized in performance for routine operation. 
In this paper, we present the system upgrade and the 
improvement of the ramping procedure to increase the 
capture and ramping efficiency of the beam charge, the 
characterization of the optics, etc.   

INTRODUCTION 
The TPS booster ring and storage ring were successfully 

commissioned in 2014 December [1,2]. Further 
commissioning with a superconducting RF system and 
insertion devices took place in the second half of 2015 [3]. 
The TPS booster ring was designed to share the same 
tunnel with the storage ring (see Fig. 1). The access to 
booster was constrained during the commissioning of 
storage ring. However, we still have great improvement in 
the capture and ramping efficiency with the following 
actions: (1) a new working tune and smaller vertical orbit 
distortion, (2) a real-time power-supply compensation 
scheme to eliminate the long-term drift of quadrupoles 
driving current, and (3) an optimized RF synchrotron 
station phase to match the LINAC working condition. We 
report also measurements of the longitudinal beam motion 
and emittance evolution during booster beam ramping.  
 

 
Figure 1: TPS booster ring and storage ring in the same 
tunnel, as shown in the booster extraction area. 

STABILITY OF POWER SUPPLY AND RF 
STATION PHASE 

The reproducibility of the ramping power supplies was  
target to ±0.25 % with respect to injection energy at 150 
MeV. In particular, the variation of the QF power supply 
causes an unacceptable tune change, i.e., x/I=5 
(IQF=3.5A) at 150 MeV. Real-time modifications of the 
power-supply waveform must be implemented to improve 

the capture and ramping efficiency. Figure 2 displays a 
histogram of the booster quadrupoles with and without 
correction. The most of quadrupoles show smaller 
variations after offset corrections. The booster beam 
current at 3 GeV before and after correction is shown in 
Figure 3.  

 
Figure 2: Histogram of booster quadrupoles with and 
without correction. 

 
Figure 3: Comparison of booster beam current at 3GeV 
for the case of before and after offset correction. 
 
There are three bunches, one major central bunch and 

two smaller side bunches from the 3-GHz LINAC to 
inject into 500 MHz booster’s RF bucket. As the arrival 
time of bunches changes as shown in Figure 4, which 
giving indication of the RF synchrotron station phase 
must be chosen at an insensitive point. The small physical 
transverse acceptance of the TPS booster ring requires 
stringent requirements on the LINAC beam quality. The 
longitudinal beam motion, ~300 turns, at the beginning of 
ramping and the booster beam current at 3 GeV due to 
varied RF synchrotron phase setting are shown in Figure 4. 
The intensive of the extraction beam current improved 
after optimization. 
Taking the actions mentioned above, we can obtain 

much improved performance in routine operation. So far, 
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Longitudinal beam profile of TPS booster ring during ramping
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Figure 8: The accumulated longitudinal beam profile and Gaussian fit of the center bunch during ramping.
 
Figure 8 depicts the variation of accumulated longitudinal 
motion with energy during ramping. The variation of the 
length of the main bunch with energy during ramping is 
completely damped at about 2 GeV or in 100 ms. The 
length of the main bunch during ramping is shown in 
Figure 9.  

 
Figure 9: Measured length of main bunch during ramping.    
 
We also observed the movement of synchrotron phase 

during energy ramping by the streak camera. Figure 10 
shows the measured and theoretical values of the 
synchrotron phase changes along the energy ramping.  
 

 
Figure 10: Measured and theoretical value of the 
synchrotron phase during energy ramping.  
 
Without accumulation, a multi-shot of longitudinal beam 

motion during 100 ms is shown in Figure 11. The 
synchrotron oscillations due to the energy vibration are 
clearly shown. The energy vibration, pulse to pulse, due to 
the booster dipole power supply offset (±0.2 %) and 
LINAC (±0.1%) were observed at low energy as shown in 

Figure 8. The estimated energy vibration was about ~±

0.25% at 20 ms with 100 pixel separation in 300 shots.  
 

 
Figure 11: Multi-shot of longitudinal beam motion. The 
synchrotron oscillation due to the energy variation is 
observed. 

CONCLUSIONS   
The TPS booster ring has been optimized for routine 

operations. The results of measurement of the emittance 
evolution during ramping in both planes agree 
satisfactorily with the model values. The longitudinal 
motion observed with a streak camera reveals the need for 
further detailed investigation in energy stability. 
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