Author: Kuo, C.-C.
Paper Title Page
MOPMR033 Characterization of Beam Properties Using Synchrotron Light at Taiwan Photon Source 316
 
  • C.Y. Liao, Y.-S. Cheng, K.T. Hsu, K.H. Hu, C.-C. Kuo, H.-J. Tsai, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) is a third-generation 3-GeV synchrotron light facility, located in National Synchrotron Radiation Research Center (NSRRC) at Hsinchu Science Park. After overcoming many challenges, the storage beam current attained 520 mA in 2015 December. The synchrotron light monitors, including X-ray and visible light, are important diagnostic tools to characterize the various machine conditions. The booster beam dynamics during ramping and the beam properties of the storage ring were studied with synchrotron light. The results of measurements are presented in this report.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR016 Impedance Study with Single Bunch Beam at Taiwan Photon Source 630
 
  • C.-C. Kuo, P.J. Chou, K.T. Hsu, K.H. Hu, C.C. Liang, C.Y. Liao, Z.K. Liu, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  The impedance at Taiwan Photon Source was investigated. The effects of bunch current such as a tune change, a synchronous phase shift and a bunch lengthening under operation conditions at various stages were measured; the machine impedances were deduced. This report presents the results with insertion devices in various configurations.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR017 First Year Performance of the TPS Booster Ring 634
 
  • H.-J. Tsai, P.J. Chou, K.T. Hsu, K.H. Hu, C.-C. Kuo, C.Y. Liao, Y.-C. Liu, G.-H. Luo, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is a 3-GeV low- emittance light source of circumference 518.4 m. The booster ring is in the same tunnel with the storage ring; its circumference at 496.8 m makes it the largest booster ring in operation in existing light sources. Since the successful commissioning at the end of 2014, the TPS booster ring has been optimized in performance for routine operation. In this paper, we present the system upgrade and the improvement of the ramping procedure to increase the capture and ramping efficiency of the beam charge, the characterization of the optics, etc.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB049 Optics Calibration During Commissioning of the Taiwan Photon Source 3357
 
  • F.H. Tseng, C.H. Chen, J.Y. Chen, M.-S. Chiu, C.-C. Kuo, Y.-C. Liu, H.-J. Tsai
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source is a 3-GeV low emittance synchrotron light machine with circumference of 518.4m. The lattice is with 24-cell DBA structure and emittance is 1.6 nm-rad. During the commissioning in the past year, we employed MATLAB-based high level applications to calibrate the optical functions in three different operation lattice modes. In particular, we used LOCO (Linear Optics from Closed Orbit) to restore the machine optical functions and reduce emittance coupling ratio. The beam-based alignment (BBA) measurements as well as BPM and corrector errors were identified.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB050 The Commmissioning of Phase-I Insertion Devices in TPS 3360
 
  • M.-S. Chiu, C.H. Chang, C.H. Chen, J. Chen, J.Y. Chen, Y.-S. Cheng, P.C. Chiu, P.J. Chou, T.Y. Chung, S. Fann, K.H. Hu, C.H. Huang, J.C. Huang, C.-S. Hwang, C.-C. Kuo, T.Y. Lee, C.C. Liang, Y.-C. Liu, H.-J. Tsai, F.H. Tseng, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is a low-emittance 3-GeV light source at Natioal Synchrotron Radiation Research Center, next to the Taiwan Light source (1.5 GeV). On March 26, 2015, the TPS storage ring with two 5-cell PETRA cavities has successfully operated in 100 mA in top-up mode without the installation of insertion devices (IDs). To reach the design goal of 500 mA, the machine was shut down for 5 months to replace PETRA cavitites with superconducting RF (SRF) cavities and to install 10 IDs: 7 in-vacuum undulators (IU) and 3 elliptically polarized undulators (EPU). The commissioning of TPS storage ring with SRF cavities and IDs began in Sep. 2015. In this paper, we present our results and proceedures of ID commissioning.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB051 Development of Intelligent Alarm Message System at TPS 3363
 
  • C.C. Liang, C.H. Chang, C.H. Chen, J. Chen, J.Y. Chen, Y.-S. Cheng, M.-S. Chiu, S. Fann, C.S. Huang, C.-C. Kuo, T.Y. Lee, Y.C. Lin, Y.-C. Liu, H.-J. Tsai, F.H. Tseng, I.C. Yang, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  The traditional alarm systems usually set up/low limit for various signals. When the acquired values exceed the limits, the alarm system would be activated. The proposed system in this article can focus on various possible events with many kinds of signals for response judgments. During alarm calling period, data can also be announced and recorded. The system can also monitor various events according to different time shifts. Integrating LabVIEW, mobile phone, AT-command and Bluetooth communication, the system can handle factory broadcast, sending E-mail and SMS message. The above sound and words messages can be set directly at the home-made software interface. The new intelligent alarm system can eliminate the procedure made by man with the added event recording, system stability improvement and debugging function in wider application fields.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOW049 Status of Insertion Devices at Taiwan Photon Source 4054
 
  • T.Y. Chung, C.-H. Chang, C.H. Chang, M.-S. Chiu, J.C. Huang, C.-S. Hwang, J.C. Jan, C.-C. Kuo, Y.-C. Liu, F.H. Tseng, C.K. Yang
    NSRRC, Hsinchu, Taiwan
 
  The storage ring of Taiwan Photon Source (TPS) has eighteen short straight sections (length 7 m) and six long straight sections (length 12 m). In phase I, three elliptically polarized undulators of type APPLE II and seven in-vacuum undulators, which included four in-vacuum undulators and two elliptically polarized undulators in three double mini-βy sections, were installed. Commissioning of the insertion devices began in 2015 November. The influence of insertion devices on the electron beam and the results after compensation are presented. Problems during the commissioning induced by the electron beam and by radiation, and their solutions, are also explained. For insertion devices in phase II and for devices developed in TPS, the preliminary designs are presented herein, to cover from the VUV to the hard X-ray region.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)