Author: Kramer, T.
Paper Title Page
MOPOY007 High Energy Booster Options for a Future Circular Collider at CERN 856
 
  • L.S. Stoel, M.J. Barnes, W. Bartmann, F. Burkart, B. Goddard, W. Herr, T. Kramer, A. Milanese, G. Rumolo, E.N. Shaposhnikova
    CERN, Geneva, Switzerland
 
  In case a Future Circular Collider for hadrons (FCC-hh) is constructed at CERN, the tunnels for SPS, LHC and the 100 km collider will be available to house a High Energy Booster (HEB). The different machine options cover a large technology range from an iron-dominated machine in the 100 km tunnel to a superconducting machine in the SPS tunnel. Using a modified LHC as reference, these options are compared with respect to their energy reach, magnet technology and filling time of the collider. Potential issues with beam transfer, reliability and beam stability are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR047 Conceptual Design Considerations for the 50 TeV FCC Beam Dump Insertion 1356
 
  • F. Burkart, M.G. Atanasov, W. Bartmann, B. Goddard, T. Kramer, A. Lechner, A. Sanz Ull, D. Schulte, L.S. Stoel
    CERN, Geneva, Switzerland
  • D. Barna
    University of Tokyo, Tokyo, Japan
 
  Safely extracting and absorbing the 50 TeV proton beams of the FCC-hh collider will be a major challenge. Two extended straight sections (ESS) are dedicated to beam dumping system and collimation. The beam dumping system will fast-extract the beam and transport it to an external absorber, while the collimation system will protect the superconducting accelerator components installed further downstream. The high stored beam energy of about 8.5 GJ per beam means that machine protection considerations will severely constrain the functional design of the ESS and the beam dump line geometry, in addition to dominating the performance specifications of the main sub-systems like kickers and absorber blocks. The general features, including concept choice, optics in the ESS and beam dump line, passive protection devices, layout and integration are described and discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR049 Feasibility Study of the PS Injection for 2 GeV LIU Beams with an Upgraded KFA-45 Injection Kicker System Operating in Short Circuit Mode 1363
 
  • T. Kramer, W. Bartmann, J.C.C.M. Borburgh, L. Ducimetière, L.M.C. Feliciano, A. Ferrero Colomo, B. Goddard, L. Sermeus
    CERN, Geneva, Switzerland
 
  Under the scope of the LIU project the CERN PS Booster to PS beam transfer will be modified to match the requirements for the future 2 GeV beams. This paper describes the evaluation of the proposed upgrade of the PS injection kicker. Different schemes of an injection for LIU beams into the PS have been outlined in the past already under the aspect of individual transfer kicker rise and fall time performances. Homogeneous rise and fall time requirements in the whole PSB to PS transfer chain have been established which allowed to consider an upgrade option of the present injection kicker system operated in short circuit mode. The challenging pulse quality constraints require an improvement of the flat top and post pulse ripples. Both operation modes, terminated and short circuit mode are analysed and analogue circuit simulations for the present and upgraded system are outlined. Recent measurements on the installed kickers are presented and analysed together with the simulation data. First measurements verifying the performance of upgrade options have been taken during the last end of the year stop. The paper concludes with an upgrade plan and a brief overview of implementation risks.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW029 Feasibility Study of the Fast SPS Ion Injection Kicker System 3607
 
  • A. Ferrero Colomo, P. Burkel, D. Comte, L. Ducimetière, T. Kramer, V. Senaj, L. Sermeus, F.M. Velotti
    CERN, Geneva, Switzerland
 
  As part of the upgrade project for ions the rise time of the injection kicker system into the SPS needs to be improved. The changes being studied include the addition of a fast Pulse Forming Line parallel to the existing Pulse Forming Network for the fast kicker magnets MKP-S. With the PFL an improved magnetic field rise time of 100 ns is targeted. Two different configuration utilizing a 2nd thyratron or two fast diode stacks have been outlined in the past. This paper presents the recent progress on the analogue circuit simulations for both options as well as measurements carried out on a test system. Modelling, optimization and simulation of the entire system with diodes and a second configuration with two thyratron switches are outlined. Measurement results are given and the feasibility of the upgrade is discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW030 Studies of Impedance-related Improvements of the SPS Injection Kicker System 3611
 
  • M.J. Barnes, A. Adraktas, M.S. Beck, G. Bregliozzi, H.A. Day, L. Ducimetière, J.A. Ferreira Somoza, B. Goddard, T. Kramer, C. Pasquino, G. Rumolo, B. Salvant, L. Sermeus, J.A. Uythoven, L. Vega Cid, W.J.M. Weterings, C. Zannini
    CERN, Geneva, Switzerland
  • F.M. Velotti
    EPFL, Lausanne, Switzerland
 
  The injection kicker system for the SPS consists of sixteen magnets housed in a total of four vacuum tanks. The kicker magnets in one tank have recently limited operation of the SPS with high-intensity beam: this is due to both beam induced heating in the ferrite yoke of the kicker magnets and abnormally high pressure in the vacuum tank. Furthermore, operation with the higher intensity beams needed in the future for HL-LHC is expected to exacerbate these problems. Hence studies of the longitudinal beam coupling impedance of the kicker magnets have been carried out to investigate effective methods to shield the ferrite yoke from the circulating beam. The shielding must not compromise the field quality or high voltage behaviour of the kicker magnets and should not significantly reduce the beam aperture: results of these studies, together with measurements, are presented. In addition results of tests to identify the causes of abnormal outgassing are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW035 Considerations on an Upgrade Possibility of the LHC Beam Dump Kicker System 3631
 
  • M.A. Fraser, W. Bartmann, C. Bracco, L. Ducimetière, B. Goddard, T. Kramer, V. Senaj
    CERN, Geneva, Switzerland
 
  The LHC Beam Dump System (LBDS) is designed to safely dispose the circulating beams over a wide range of energy from 450 GeV up to 7 TeV, where the maximum stored energy is 362 MJ per beam. One of the most critical components of the LBDS are the extraction kickers that must reliably switch on within the 3 us particle-free abort gap. To ensure this functionality, even in the event of a power-cut, the power generator capacitors remain charged and hence the Gate Turn-Off (GTO) switch stack has to hold the full voltage throughout beam operation. The increase of the LHC collision energy to 13 TeV has increased the voltage levels at the GTO stacks and during re-commissioning an increased rate of high-voltage (HV) related issues at the level of the GTO stack was observed. Different solutions have been analysed and an improved GTO stack will be implemented. This paper also outlines the benefit of adding more kicker magnets to improve the voltage hold off issues and to improve the tolerance to missing kickers during extraction.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR049 Considerations for the Injection and Extraction Kicker Systems of a 100 TeV Centre-of-Mass FCC-hh Collider 3901
 
  • T. Kramer, M.J. Barnes, W. Bartmann, F. Burkart, L. Ducimetière, B. Goddard, V. Senaj, T. Stadlbauer, D.G. Woog
    CERN, Geneva, Switzerland
  • D. Barna
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
 
  A 100 TeV center-of-mass energy frontier proton collider in a new tunnel of ~100 km circumference is a central part of CERN's Future Circular Colliders (FCC) design study. One of the major challenges for such a machine will be the beam injection and extraction. This paper outlines the recent developments on the injection and extraction kicker system concepts. For injection the system requirements and progress on a new inductive adder design will be presented together with first considerations on the injection kicker magnets. The extraction kicker system comprises the extraction kickers itself as well as the beam dilution kickers, both of which will be part of the FCC beam dump system and will have to reliably abort proton beams with stored energies in the range of 8 Gigajoule. First concepts for the beam dump kicker magnet and generator as well as for the dilution kicker system are described and its feasibility for an abort gap in the 1 μs range is discussed. The potential implications on the overall machine and other key subsystems are outlined, including requirements on (and from) dilution patterns, interlocking, beam intercepting devices and insertion design.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)