Author: Koufalis, P.N.
Paper Title Page
WEPMR025 Improved N-Doping Protocols for SRF Cavities 2323
 
  • D. Gonnella, R.G. Eichhorn, F. Furuta, G.M. Ge, T. Gruber, G.H. Hoffstaetter, J.J. Kaufman, P.N. Koufalis, M. Liepe, J.T. Maniscalco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF, DOE
Nitrogen-doping has been shown to consistently produce better quality factors in SRF cavities than is achievable with standard preparation techniques. Unfortunately, nitrogen-doping typically brings with it lower quench fields and higher sensitivities of residual resistance to trapped magnetic flux. Here we present work to understand these effects in hopes of mitigating them while maintaining the high Q desired by future projects. Using a nitrogen diffusion simulation, material parameters of nitrogen-doped cavities can be predicted prior to doping. These simulations results are consistent with SIMS data taken from samples treated with cavities. The nature of doping's effect on quench field has also been studied using CW and pulsed measurements. These results have allowed us to better understand the nature of nitrogen-doping and its effect on cavity performance.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR026 RF Losses from Trapped Flux in SRF Cavities 2327
 
  • D. Gonnella, J.J. Kaufman, P.N. Koufalis, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF
Previous measurements at Cornell have shown that the sensitivity of residual resistance to trapped magnetic field in SRF cavities is heavily dependent on the mean free path of the RF penetration layer of the niobium. Here we report on a systematic study of ten cavity preparations with different mean free paths and the effect of these preparations on sensitivity to trapped magnetic flux. In the clean limit, longer mean free path leads to a lower sensitivity to trapped magnetic flux while in the dirty limit the opposite is true, shorter mean free path leads to lower sensitivity. These results are also shown to be in good agreement with theoretical predictions of RF losses due to oscillations of vortex lines.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR027 Dependence of Surface Resistance on N-Doping Level 2331
 
  • D. Gonnella, F. Furuta, G.M. Ge, J.J. Kaufman, P.N. Koufalis, M. Liepe, J.T. Maniscalco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF, DOE
Nitrogen-doping has become a standard tool for reaching high quality factors in SRF cavities in the medium field region at 2 K. This high Q has been shown to be a result of lowering of the temperature dependent BCS resistance. Here we show that this lowering of the BCS resistance is due to interstitial nitrogen in the niobium lowering the mean free path. The BCS resistance extracted from experimental data is shown to be consistent with theoretical predictions from BCS theory; that there is an optimal doping of which the mean free path is lowered to about half the intrinsic coherence length. These results provide insight into understanding the mechanisms behind nitrogen-doping and allow us to more accurately predict doping parameters to reach optimal cavity performance.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR028 Studies on the Field Dependence of the BCS Surface Resistance 2335
SUPSS116   use link to see paper's listing under its alternate paper code  
 
  • J.T. Maniscalco, D. Gonnella, G.H. Hoffstaetter, P.N. Koufalis, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Experiments have shown that the temperature-dependent portion of the RF surface resistance of SRF materials also exhibits a dependence on the magnitude of the surface field, manifested as a "Q-slope" or "anti-Q-slope" in the medium field region. Recent theoretical work proposes an explanation of the anti-Q-slope in dirty-limit superconductors. In this report, we compare theoretical predictions with the results of systematic experimental studies on the RF field dependence of the surface resistance using 1.3 GHz niobium SRF cavities with a wide range of mean free paths. We find very good agreement between theory and experiment in the dirty limit, with some divergence as the cavities approach the clean limit.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR030 Pulsed Field Limits in SRF Cavities 2341
 
  • J.T. Maniscalco, D. Gonnella, D.L. Hall, P.N. Koufalis, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  High-power pulsed (HPP) measurements of SRF cavities offer several different avenues of experimentation from standard continuous wave (CW) measurements by probing higher fields and reducing thermal effects. In this paper we report upon recent measurements of N-doped Nb and Nb3Sn cavities, investigating the limitations of the superheating field, flux entry field, and other maximum fields. We also investigate the potential of these materials for operation in a pulsed accelerator, which would partially or fully mitigate the effects of defects (i.e. thermal quenches).  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBB02 Impurity Doping of Superconducting Radio Frequency Cavities 3195
SUPSS093   use link to see paper's listing under its alternate paper code  
 
  • P.N. Koufalis, F. Furuta, G.M. Ge, D. Gonnella, J.J. Kaufman, M. Liepe, J.T. Maniscalco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF PHYS-1416318
Impurity doping of bulk-niobium superconducting radio frequency (SRF) cavities is a relatively new field of study and the underlying physics is not yet fully understood. Previous studies have shown an increase in the intrinsic quality factor and the corresponding decrease of the temperature-dependent component of the surface resistance of nitrogen-doped cavities with increasing accelerating field.* Here we investigate the effects of alternative inert dopants on the surface resistance and thus the intrinsic quality factor of SRF cavities in pursuit of the optimal dopant and doping level.
A. Grassellino et al., Nitrogen and Argon Doping of Niobium for Superconducting Radio Frequency Cavities. Supercond. Sci. Technol., 26(102001), 2013
 
slides icon Slides THOBB02 [4.048 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THOBB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)