Author: Huang, X.
Paper Title Page
MOPMB033 The Influence of Strip-line BPMs' Measuring Results Made by Edge of the Ultra-relativistic Electron Beam 161
 
  • S.Z. Wang, N. Gan, X. Huang
    IHEP, Beijing, People's Republic of China
 
  This paper describes the impact on the measuring results of the stripline beam position monitor (BPM) produced by the edge of the ultra-relativistic electron beam when we take the transverse size of the beam into account. Simulations have been made by using the Wakefield Solver of CST Particle Studio. And the result of this influence at different ratio of beam horizontal width σ and the BPM inner diameter a has been obtained. This kind of influence has been observed in the stripline BPMs in the transfer line of Beijing Positron Electron Colliders upgraded version II (BEPCII). The research is useful when we design the inner diameter of the stripline BPMs for ultra-relativistic electron beam, meanwhile it provides reference to distinguish the invalid ones from the measuring results obtained by the stripline BPMs in the ultra-relativistic situation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB031 Post Processing of Spoke Type Superconducting Cavities at Institute of High Energy Physics 2191
 
  • J. Dai, J.P. Dai, F.S. He, X. Huang, L.H. Li, Z.Q. Li, H.Y. Lin, Z.C. Liu, B. Ni, W.M. Pan, P. Sha, G.W. Wang, Q.Y. Wang, Z. Xue, X.Y. Zhang, G.Y. Zhao
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by Chinese Academy of Science strategic Priority Research Program-Future Advanced Nuclear Fission Energy.
After upgrading the post-processing system, several superconducting cavities were RF tested at Institute of High Energy Physics (IHEP) in China recently. The test results of 14 spoke 012 cavities and 6 spoke 021 cavities which used at China ADS injector I and linac all exceeds our design objective. Moreover, a spoke 040, a 650MHz elliptical cavity and a 325MHz HWR cavity are also vertical tested and the test results are all significantly surpass our design value. The post processing of these cavities including Buffered Chemical Polishing (BCP), high temperature heat treatment and High Pressure water Rinsing (HPR) is presented here.
daijin@pku.edu.cn
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR035 MicroTCA.4-Based LLRF System for Spoke Cavities of C-ADS Injector I 2749
 
  • X. Ma, N. Gan, X. Huang, N. Liu, R.L. Liu, G.W. Wang, Q.Y. Wang
    IHEP, Beijing, People's Republic of China
  • H.Y. Lin
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People's Republic of China
 
  The C-ADS Injector I is being built in IHEP, which includes 14 β=0.12 superconducting single spoke cavities enclosed with two cryomodules under 2 K. The MicroTCA.4-based Low Level RF (LLRF) system provides GDR mode for the operation of the cavities. The LLRF system supports both CW and duty-adjustable pulsed operation modes for the high power source and the cavities. The firmware of the FPGA controller and the EPICS IOC software has been upgraded during the last half year adding feedforward and abnormal detection. The operator interface (OPI) software and automatic operation script are also described. The MicroTCA.4 platform runs well for the beam commissioning of the Injector I. Some gained experiences with stable beam operation are also shown.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR036 Design and Commissioning of LLRF System for ADS Project in China 2752
 
  • R.L. Liu, Y.L. Chi, N. Gan, X. Huang, N. Liu, X. Ma, Z.H. Mi, G.W. Wang, Q.Y. Wang, S.Z. Wang, Z.S. Zhou
    IHEP, Beijing, People's Republic of China
  • H.Y. Lin
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People's Republic of China
 
  This article describes a low-level RF control system for the ADS project at IHEP, which includes control units for an RFQ, 2 Bunchers and 14 spoke superconducting cavities with the reference line distribution. The paper covers system design consideration and implementation for those units. we will also presented some experience and results for the last one year operation of these LLRF systems.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)