Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPWA077 | EPICS, MATLAB, GigE CCD Camera Based Beam Imaging System for the IAC-RadiaBeam THz Project | EPICS, controls, optics, background | 858 |
|
|||
At the Idaho Accelerator Center (IAC) of Idaho State University, we have been operating an L-band RF linear accelerator running at low energies (5 - 44 MeV) for the IAC-RadiaBeam THz project. We have designed and implemented an image acquisition and analysis system that can be used for real time observation of the electron beam, tuning of THz radiation production, and measurement of the transverse beam emittance. The imaging system contains an Yttrium Aluminium Garnet (YAG) screen on an actuator, a Prosilica GC1290 GigE CCD camera with an adjustable lens, a screen illuminator, an optical alignment structure, and a lead tube for the camera shielding. The real time continuous beam images can be acquired by SampleViewer, while the single shot beam image can be acquired by the Experiential Physics and Industrial Control System (EPICS) and areaDetector. In this paper, we describe components of the imaging system, the real time beam image acquisition with SampleViewer, the single shot beam image acquisition with areaDetector, and a remote controllable beam image acquisition via MATLAB Channel Access (MCA), MATLAB, and EPICS. | |||
MOPWO011 | Surface Field Optimization of Accelerating Structures for CLIC using ACE3P on Remote Computing Facility | simulation, linac, target, damping | 909 |
|
|||
Funding: Research Council of Norway This paper presents a computer program for searching for the optimum shape of an accelerating structure cell by scanning a multidimensional geometry parameter space. For each geometry, RF parameters and peak surface fields are calculated using ACE3P on a remote high-performance computational system. Parameter point selection, mesh generation, result storage and post-analysis are handled by a GUI program running on the user’s workstation. This pa- per describes the program, AcdOptiGui. AcdOptiGui also includes some capability for automatically selecting scan points based on results from earlier simulations, which en- ables rapid optimization of a given parameterized geome- try. The software has previously been used as a part of the design process for accelerating structures for a 500 GeV CLIC. |
|||
TUPEA080 | Numerical Modeling and Experimental Data Analysis for Dielectric Laser Accelerators | laser, electron, acceleration, vacuum | 1310 |
|
|||
Funding: Work supported by a grant for the US Defense Threat Reduction Agency (DTRA). Work on Dielectric Laser Accelerators (DLAs) has been ongoing for the past decade. These devices come in a variety of configurations but share the use of lasers as power sources and dielectrics as the primary building material. While these devices have many of the same characteristics and dynamics as conventional accelerating structures, they operate in a dramatically different regime. One version of these DLAs is the Micro Accelerator Platform (MAP): a slab-symmetric device operated with a standing wave (Pi-mode) and powered by a transversely coupled laser. The coupler is essentially a transmissive diffraction grating and therefore reinforced the desired mode. The remainder of the structure is composed of two Distributed Bragg Reflectors (DBRs) which serve to form a resonant cavity in an evacuated bounded by the reflectors. The MAP has now undergone experimental testing at SLAC’s E-163. As with many advanced accelerators, identifying the best data analysis approach demands extensive numerical modelling of the anticipated beam parameters and development of data visualization tools. We present the latest numerical results and data analysis tools developed for dielectric laser acceleration experiments with MAP. |
|||
THPEA049 | Implementation of the EPICS Data Archive System for the TPS Project | EPICS, controls, synchrotron, LabView | 3255 |
|
|||
The EPICS framework was chosen as control system infrastructure for the new project of 3 GeV synchrotron light source (Taiwan Photon Source, TPS). Various control system prototypes of TPS with the EPICS mechanism have been gradually built and tested. One EPICS archive system is necessary to be developed to record various machine parameters and status information for long time logging. The archive system of CSS (Control System Studio) which named BEAUTY (Best Ever Archive Toolset, yet) was built to be used as the TPS data archive system in 3rd quarter of 2012. An archive engine takes PV data from EPICS IOCs via channel access, and stores them in the data storage. The PostgreSQL RDB (Relational Database) was adopted as the data storage for the BEAUTY. Both the historic PVs data and the archive engine configuration are saved into the same RDB. The archived data can be retrieved in a form of graphical representation using the CSS-based data browser. Taking the performance and redundancy into considerations, the storage servers and RDB table structures are tuned relatively. The efforts will be described at this report. | |||