TUODA —  Synchrotron Light Sources and FELs   (06-Sep-11   15:00—16:00)
Chair: W. Namkung, PAL, Pohang, Kyungbuk, Republic of Korea
Paper Title Page
TUODA01 Vertical Emittance Reduction and Preservation at the ESRF Electron Storage Ring 928
 
  • A. Franchi, J. Chavanne, F. Ewald, L. Farvacque, T.P. Perron, K.B. Scheidt
    ESRF, Grenoble, France
 
  In 2010 a campaign for the reduction and preservation of low vertical emittance at the ESRF electron storage ring was undertaken: values between 20 and 30 pm have been dramatically reduced to 3.5-4.5 pm, even during beam delivery. This improvement is the result of an increased measurement precision provided by the recently upgraded beam position monitoring system, a new correction algorithm, a larger number of correctors and two independent schemes for the automatic compensation of coupling induced by a few insertion devices whenever their gaps are moved by users during beam delivery. This paper summarizes the campaign's milestones and the results updated to the first half of 2011.  
slides icon Slides TUODA01 [5.297 MB]  
 
TUODA02 Status of Sirius – a New Brazilian Synchrotron Light Source 931
 
  • L. Liu, R. Basílio, J.F. Citadini, R.H.A. Farias, R.J.F. Marcondes, X.R. Resende, F. Rodrigues, A.R.D. Rodrigues, P.P. Sanchez, R.M. Seraphim, G. Tosin, F. H. de Sá
    LNLS, Campinas, Brazil
 
  We present an overview of the new synchrotron light source project Sirius, currently being designed at the Brazilian Synchrotron Light Laboratory (LNLS) in Campinas, São Paulo. Sirius will consist of a 480 m circumference, 3.0 GeV, 20 TBA cells, 1.7 nm.rad emittance storage ring. The dipoles will be based on the use of permanent magnet technology and will combine low field magnets (0.5 T) for the main beam deflection with a short slice of high field magnet (2.0 T) to generate photons of 12 keV critical energy with modest total energy loss. There will be 18 straight sections for insertion devices. In this report we describe the current status for the magnet lattice design and some of the subsystems.  
slides icon Slides TUODA02 [2.434 MB]  
 
TUODA03 The Status of the ALICE Accelerator R&D Facility at STFC Daresbury Laboratory 934
 
  • F. Jackson, D. Angal-Kalinin, R. Bate, R.K. Buckley, S.R. Buckley, J.A. Clarke, P.A. Corlett, D.J. Dunning, J.-L. Fernández-Hernando, A.R. Goulden, S.F. Hill, D.J. Holder, S.P. Jamison, J.K. Jones, L.B. Jones, A. Kalinin, S. Leonard, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, A.J. Moss, B.D. Muratori, T.T. Ng, J.F. Orrett, S.M. Pattalwar, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, A.D. Smith, R.J. Smith, S.L. Smith, N. Thompson, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Harrison, G.M. Holder, A.L. Schofield, P. Weightman, R.L. Williams, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • M.D. Roper
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • M. Surman
    STFC/DL/SRD, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Science and Technology Facilities Council
The ALICE accelerator, the first energy recovery machine in Europe, has recently demonstrated lasing of an infra-red free electron laser (IR-FEL). The current status of the machine and recent developments are described. These include: lasing of the IR-FEL, a programme of powerful coherent terahertz radiation research, electro-optic diagnostic techniques, development of high precision timing and distribution system, implementation of digital low level RF control. ALICE also serves as an injector for the EMMA non-scaling FFAG machine.
 
slides icon Slides TUODA03 [1.648 MB]