

status on the new Brazilian synchrotron light source

Liu Lin on behalf of the LNLS Project Team Presented at IPAC11, San Sebastian, Spain

About Brazil (2011)

Area	8.5 x 10 ⁶ km ²	World rank 5th
Population	195 million people	World rank 5th
GDP	\$1.75 trillion per year	World rank 8th

About Brazil (2011)

2014 – World Cup (football) 2016 – Olympic Games

LNLS campus today

Brief Historical Overview

- 1987-1997 Design, construction and commissioning of UVX, a 1.4 GeV Synchroton Light Source, from scratch.
- 1997 UVX is opened for users.
- **2006** First discussions about a new 3rd generation light source.
- Nov/2008 The Ministry of Science and Technology (MCT) approves
 R\$ 2M (~€ 0.9M) for preliminary studies.
- **–** Two scientific case workshops.
 - Design and prototype work starts.
- MCT approves R\$ 7M which was mostly used to improve the LNLS engineering infrastructure.
 - The new source is named **SIRIUS**.
- Aug/2011 MCT approves R\$ 11M (4.9 M€).

The LNLS approach to SIRIUS

- Energy: 3 GeV
- Use of permanent magnet technology for the dipoles.
- 20 modified TBA cells with low field main dipoles (0.5 T).
- Split central dipole to accommodate a high field (2 T) slice.

Main particularities

• Strong magnetic field (hard X-ray) only at beamline exit

- Lower radiation power from dipoles \rightarrow Lower investments in high power RF equipment.
 - → Lower investments in vacuum equipment.
- Lower operational costs (RF power generation and cooling) .

• Permanent magnet dipoles

•Lower investments in power supplies and cooling systems.

•Lower operational costs.

•Higher reliability.

Accelerators layout

Storage ring optics

Achromatic mode

Storage ring optics

Low emittance mode

Storage ring optics

Hybrid mode

Effect of wigglers on emittance

Insertion Devices already existing at LNLS (presently installed in UVX)

WSC60 = 4 T superconducting wiggler, period=60 mm, N=17

W180 = 2 T hybrid wiggler, period=180 mm, N=15

Sirius general parameters

Parameter	Value	unit
Operation energy	3.0	GeV
Injection energy	3.0	GeV
Maximum beam current	500	mA
Ring circumference	479.7	m
Revolution period	1.600	μs
Beam emittance without IDs, horizontal	1.7 – 2.8	nm.rad
vertical (@ 0.5% coupling)	8.5 – 14	pm.rad
Main bending field	0.5	Т
Slice (1.24°) bending field (NdFeB)	1.95	Т
Number of achromats	20	
Main bending radius	20.0	m
Slice bending radius	5.1	m
Critical energy from dipoles (2 T slice)	11.7	keV
Critical wavelength from dipoles (2 T slice)	1.1	Å
Energy loss per turn from dipoles	430	keV
Synchrotron radiation power from dipoles (500 mA)	215	kW

Improvements in brightness

UVX = existing synchrotron light source (1.37 GeV/250 mA)
SIRIUS = new source in design (3 GeV/500 mA)
U20 = 20 mm period in-vacuum undulator
WSC60 = 4 T superconducting wiggler

Non-linear optimization

Optimization of WP and sextupole configuration using MAD (CERN), OPA (SLS) and Tracy3 (Soleil)

Low emittance mode, lattice with multipole errors in all magnets

Orbit correction

Closed orbit, statistics over 100 random machines

Corrector values

Alignment and excitation errors, uniform random distribution

Χ, Υ	[µm]	30
Roll	[mrad]	0.2
Excitation [%]		0.05

Simulated configuration

BPMs	180
Hor. Correctors	160
Ver. Correctors	160
Skew Correctors	40

Coupling

Investments in LNLS infra-structure

Machine shop

Laser cutting machine

5 axis machining center Precision: 0.003 mm

Electronics

Circuit board prototyping machine

4 axis machining center Precision: 0.01 mm table: 2.9 m X 0.7 m

Magnetic measurement

Mechanical design

Fast mechanical prototyping machine

First permanent magnet dipole prototypes

2 T slice dipole

Model using segmented dipoles Sextupole component incorporated into non-linear optimization

For the next prototype: Bmax = 1.95 T θ = 1.24°

0.5 T main deflection dipole

We need to improve the stability of the hall probe measurement bench

Proposed vacuum system concept

- NEG pumps cannot be employed because the use of permanent magnets prevents in-situ activation.
- Use of 'distributed' ion pumps, with pumping cells installed inside the antechamber.

Vacuum system

Measurement of effective ion pump pumping speed

Proposed setup for Sirius

Ion pump in conventional set-up

Effective pumping speed of ion pumps increases by 70%

UVX as a test bench for Sirius

Fast orbit and bunch-by-bunch feedback loops.

RF system using solid state amplifiers at 476 MHz developed in collaboration with Soleil.

Ethernet 100 Mbps

Distributed control system using Single Board Computers.

Modular power supplies. The units can operate independently or combined for higher current.

Injection using pulsed sextupole in UVX

Preparation for tests at next shutdown in December.

simulation

Power supply pulse

Sirius location on LNLS campus

Building

Thank you

for your attention!