Keyword: superconducting-RF
Paper Title Other Keywords Page
MOPC050 Multipacting Analysis for the Superconducting RF Cavity HOM Couplers in ESS cavity, electron, simulation, HOM 190
 
  • S. Molloy
    ESS, Lund, Sweden
  • R. Ainsworth
    Royal Holloway, University of London, Surrey, United Kingdom
  • R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
 
  The European Spallation Source (ESS) linac will consist of three families superconducting RF cavities to accelerate protons to the required 5 MW for collision with the target. If it is determined that HOM damping is required to limit the effect of beam induced modes, it is quite likely that HOM couplers will be installed. Multipacting in these couplers is a concern as thermally induced detuning of the fundamental notch filter has limited the achievable gradient in other high power machines. It is therefore important to avoid potential multipacting conditions during the design phase. Presented here are simulations using the Track3P code developed at SLAC. Multipacting regions are highlighted, electron trajectories are shown, and suitability of the proposed HOM coupler design is discussed.  
 
TUPO012 Stable Planner Type Four-mirror Cavity Development for X-ray Production as Basic Development of Quantum Beam Technology Program laser, cavity, injection, target 1470
 
  • H. Shimizu, Y. Higashi, Y. Honda, J. Urakawa
    KEK, Ibaraki, Japan
 
  As the development of quantum beam technology program, a facility to produce a semi-monochromatic X-ray via inverse Compton scattering with an electron beam accelerated by a superconducting RF cavity and a fiber amplified high power laser stacked in an external optical cavity system are now under construction. To achieve high brightness of Compton X-ray, we introduced a chicane with about a 1m-long zero dispersion straight section that includes IP. Head on collision scheme improves the yield of X-ray, but to do so, a huge and stout external optical cavity system must be needed. According to this demand, we develop a quite tolerable planner type four-mirror cavity with movable mirror mount system. In this paper, results obtained by the cavity construction and also laser development activities are described.