Keyword: superconducting-magnet
Paper Title Other Keywords Page
TUPC136 Analysis of Fast Losses in the LHC with the BLM System beam-losses, injection, quadrupole, proton 1344
 
  • E. Nebot Del Busto, T. Baer, B. Dehning, E. Effinger, J. Emery, E.B. Holzer, A. Marsili, A. Nordt, M. Sapinski, R. Schmidt, B. Velghe, J. Wenninger, C. Zamantzas, F. Zimmermann
    CERN, Geneva, Switzerland
  • N. Fuster
    Valencia University, Atomic Molecular and Nuclear Physics Department, Valencia, Spain
  • Z. Yang
    EPFL, Lausanne, Switzerland
 
  About 3600 Ionization Chambers are located around the LHC ring to detect beam losses that could damage the equipment or quench superconducting magnets. The BLMs integrate the losses in 12 different time intervals (from 40 us to 83.8 s) allowing for different abort thresholds depending on the duration of the loss and the beam energy. The signals are also recorded in a database at 1 Hz for offline analysis. During the 2010 run, a limiting factor in the machine availability were sudden losses appearing around the ring on the ms time scale and detected exclusively by the BLM system. It is believed that such losses originate from dust particles falling into the beam, or being attracted by its strong electromagnetic field. This document describes some of the properties of these "Unidentified Falling Objects" (UFOs) putting special emphasis on their dependence on beam parameters (energy, intensity, etc). The subsequent modification of the BLM beam abort thresholds for the 2011 run that were made to avoid unnecessary beam dumps caused by these UFO losses are also discussed.  
 
TUPS020 Leak Tightness of LHC Cold Vacuum Systems vacuum, cryogenics, controls, proton 1566
 
  • P. Cruikshank, S.D. Claudet, W. Maan, L. Mourier, A. Perrier-Cornet, N. Provot
    CERN, Geneva, Switzerland
 
  The cold vacuum systems of the LHC machine have been in operation since 2008. While a number of acceptable helium leaks were known to exist prior to cooldown and have not significantly evolved over the last years, several new leaks have occurred which required immediate repair activities or mitigating solutions to permit operation of the LHC. The LHC vacuum system is described together with a summary and timetable of known air and helium leaks and their impact on the functioning of the cryogenic and vacuum systems. Where leaks have been investigated and repaired, the cause and failure mechanism is described. We elaborate the mitigating solutions that have been implemented to avoid degradation of known leaks and minimize their impact on cryogenic operation and LHC availability, and finally a recall of the consolidation program to be implemented in the next LHC shutdown.  
 
TUPS093 Automatic Measurement System for Electrical Verification of the LHC Superconducting Circuits pick-up, high-voltage, instrumentation, dipole 1756
 
  • A. Kotarba, M. Bednarek, P. Jurkiewicz, J. Ludwin, M. Talach
    IFJ-PAN, Kraków, Poland
  • R. Mompo
    CERN, Geneva, Switzerland
 
  In the LHC machine, superconducting magnet circuits are used on a very large scale. The circuits, more than 1600, are all equipped with a complex set of instrumentation required for safe operation and diagnostics. The length of many circuits exceed 3 km. Due to risks of accidental damages during transport and assembly or misconnection of the circuits’ auxiliary components, it is necessary to perform an Electrical Quality Assurance (ELQA) campaign after every major intervention on a circuit and also after each thermal cycle of the machine. In order to be able to perform reliable tests on a circuit within a short time frame, a highly extensible automated mobile test system was designed and built. Four of these instruments were successfully used during the Hardware Commissioning phases of the LHC. This paper describes the hardware solutions used in the test system.  
 
THPS074 Design of Superconducting Rotating-gantry for Heavy-ion Therapy quadrupole, ion, heavy-ion, dipole 3601
 
  • Y. Iwata, T. Furukawa, A. I. Itano, K. Mizushima, K. Noda, T. Shirai
    NIRS, Chiba-shi, Japan
  • N. Amemiya
    KUEE, Kyoto, Japan
  • T. Obana
    NIFS, Gifu, Japan
  • T. Ogitsu
    KEK, Ibaraki, Japan
  • T. Tosaka, I. Watanabe
    Toshiba, Tokyo, Japan
  • M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  Tumor therapy using energetic carbon ions, as provided by the HIMAC, has been performed since June 1994, and more than 5000 patients were treated until now. With the successful clinical results, we constructed a new treatment facility. The new facility has three treatment rooms; two of them have both horizontal and vertical fixed-irradiation-ports, and the other has a rotating-gantry-port. For all the ports, a scanning-irradiation method is applied. The fixed-irradiation-ports were constructed and commissioned, and we are now designing the rotating gantry. This isocentric rotating-gantry can transport heavy ions having 430 MeV/u to the isocenter with irradiation angles of 0-360 degrees. For the magnets, combined-function superconducting-magnets will be employed. The use of the superconducting magnets allowed us to design the compact gantry; the length and radius of the gantry would be approximately 12m and 5m, which are comparable to those of the existing proton gantries. A part of the superconducting magnets will be constructed within this fiscal year. The design of the rotating gantry, including the beam optics as well as details of the superconducting magnets, will be presented.  
 
THPZ030 Halo Scrapings with Collimators in the LHC collimation, beam-losses, luminosity, proton 3756
 
  • F. Burkart, R.W. Assmann, R. Bruce, M. Cauchi, D. Deboy, S. Redaelli, A. Rossi, G. Valentino, D. Wollmann
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
 
  The population of the beam halo has been measured in the LHC with beam scraping experiments. Primary collimators of the LHC collimation system were used to scrape the beam halo at different statuses of the machine (injection, top energy, separated and colliding beams). In addition these measurements were used to calibrate the beam loss monitor signals to loss rates at the primary collimators. Within this paper the halo scraping method, the measured halo distribution and the calibration factors are presented and compared to theoretical predictions.