05 Beam Dynamics and Electromagnetic Fields
D04 High Intensity in Linear Accelerators
Paper Title Page
MOODB01 Dynamics of the IFMIF Very High-intensity Beam 53
 
  • P.A.P. Nghiem, R.D. Duperrier, A. Mosnier, D. Uriot
    CEA/DSM/IRFU, France
  • N. Chauvin, O. Delferrière, W. Simeoni
    CEA/IRFU, Gif-sur-Yvette, France
  • M. Comunian
    INFN/LNL, Legnaro (PD), Italy
  • C. Oliver
    CIEMAT, Madrid, Spain
 
  For the purpose of material studies for future nuclear fusion reactors, the IFMIF deuteron beams present a simultaneous combination of unprecedentedly high intensity (2x125 mA CW), power (2x5 MW) and space charge. Special considerations and new concepts have been developed in order to overcome these challenges. The global strategy for beam dynamics design in the 40 MeV IFMIF accelerators is presented, stressing on the control of micro-losses, and the possibility of on-line fine tuning. The obtained results are then analysed in terms of beam halo and emittance growth.  
slides icon Slides MOODB01 [3.807 MB]  
 
MOODB02 RF Modeling Plans for the European Spallation Source 56
 
  • S. Molloy, M. Lindroos, S. Peggs
    ESS, Lund, Sweden
  • R. Ainsworth
    Royal Holloway, University of London, Surrey, United Kingdom
  • R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
 
  The European Spallation Source (ESS) will be the world's most powerful next generation neutron source. The ESS linac is designed to accelerate highly charged bunches of protons to a final energy of 2.5 GeV, with a design beam power of 5 MW, for collision with a target used to produce the high neutron flux. In order to achieve this several stages of RF acceleration are required, each using a different technology. The high beam current and power require a high degree of control of the accelerating RF, and the specification that no more than 1 W/m of losses will be experienced means that the excitation and decay of the HOMs must be very well understood. Experience at other high power machines also implies that an understanding of the generation and subsequent trajectories of any field-emitted electrons should be understood. Thermal detuning of the HOM couplers due to multipacting is a serious concern here. This paper will outline the RF modeling plans - including the construction of mathematical models, simulations of HOMs, and multipacting - during the current Accelerator Design Update phase, and will discuss several of the more important issues for ESS.  
slides icon Slides MOODB02 [48.641 MB]  
 
MOPS023 An Analytical Lagrangian Model for Analyzing Temperature Effects in Intense Non-neutral Beams* 646
 
  • E.G. Souza, A. Endler, R. Pakter, F.B. Rizzato
    IF-UFRGS, Porto Alegre, Brazil
 
  High-intensity charged-particle beams are used in several areas of physics. We can mention as an illustration, high-energy colliders, particle accelerators and vacuum electron devices. In all cases quoted above, the beam lose particles in the acceleration process, between its production to its fi nal destination. These ejected particles, generally, produce a surrounding structure around the beam core, called halo. This undesirable structure is seen in simulation as well as in actual linacs, and its formation has been one of the main sources of energy loss in the acceleration devices. For this reason, the need for an advance in understand the mechanism that produce the halo becomes necessary. In view of the whole problem, we contruct a 1D Lagrangian warm-fluid model for describe the behavior of inhomogeneous charged-particle beam in solenoidal focusing magnetic field. The equations of motion are derived for an adiabatic process with a state equation originated from the ideal gas law. In the end, the model is compared with self-consistent simulation and is used to explain emittance growth and jets of particle, even when the system is out of equilibrium.  
 
MOPS024 Bunch Dynamics through Accelerator Column 649
 
  • R.A. Baartman
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
 
  Funding: TRIUMF research is supported by the National Research Council of Canada.
The differential equations for the bunched beam envelope through an axially symmetric DC accelerator are derived. In the case of no space charge, a particle's total energy is conserved, so the longitudinal evolution is simple: particles of same energy are a fixed time increment apart and this implies in first order that their separation is proportional to their speed. However, with space charge, the longitudinal force depends upon the bunch length, so we need equations that track this parameter. The full 6-dimensional and relativistically correct envelope equations are derived.
 
 
MOPS025 Studies of Emittance Measurement by Quadrupole Variation for the IFMIF-EVEDA High Space Charge Beam 652
 
  • P.A.P. Nghiem, E. Counienc
    CEA/DSM/IRFU, France
  • N. Chauvin
    CEA/IRFU, Gif-sur-Yvette, France
  • C. Oliver
    CIEMAT, Madrid, Spain
 
  For the high-power (1 MW) beam of the IFMIF-EVEDA prototype accelerator, emittance measurements at nearly full power are only possible in a non-interceptive way. The method of quadrupole variation is explored here. Due to the high space charge regime, beam transport is strongly non-linear, and the classical matrix inversion is no more relevant. Inverse calculations using a multiparticle code is mandatory. In this paper, such emittance measurements are studied, aiming at checking its feasibility and evaluating its precision, taking into account the constraints of losses and quadrupole limitations.  
 
MOPS026 Start-to-end Beam Dynamics Simulations for the Prototype Accelerator of the IFMIF/EVEDA Project 655
 
  • N. Chauvin
    CEA/IRFU, Gif-sur-Yvette, France
  • M. Comunian
    INFN/LNL, Legnaro (PD), Italy
  • O. Delferrière, R.D. Duperrier, R. Gobin, A. Mosnier, P.A.P. Nghiem, D. Uriot
    CEA/DSM/IRFU, France
  • C. Oliver
    CIEMAT, Madrid, Spain
 
  The EVEDA (Engineering Validation and Engineering Design Activities) phase of the IFMIF (International Fusion Materials Irradiation Facility) project consists in building, testing and operating a 125 mA/9 MeV prototype accelerator in Rokkasho-Mura (Japan). Because of high beam intensity and power, the different sections of the accelerator (injector, RFQ, MEBT, Superconducting Radio-Frequency linac and HEBT) have been optimized with the twofold objective of minimizing losses along the machine and keeping a good beam quality. Extensive start-to-end multi-particles simulations have been performed to validate the prototype accelerator design. A Monte Carlo error analysis has been carried out to study the effects of misalignments and field variations. In this paper, the results of theses beam dynamics simulations, in terms of beam emittance, halo formation and beam losses, are presented.  
 
MOPS027 Stability Charts for the IFMIF SRF-Linac 658
 
  • W. Simeoni, N. Chauvin
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Mosnier, P.A.P. Nghiem, D. Uriot
    CEA/DSM/IRFU, France
 
  Among the most recent projects, the IFMIF-EVEDA accelerators break the record of high intensity, leading to a multi-MW beam power at relatively low energy. The concern for such accelerated beams is the predominance of the self-field energy upon the beam energy. In these conditions, the space charge effect is at its maximum, which triggers different nonlinear mechanisms implying emittance growth, halo formation and sudden particle lost. In this proceeding we show the stability charts constructed for the IFMIF SRF-Linac, with which are identified the collective space charge resonances responsible of transverse-longitudinal emittance exchange and emittance growth.  
 
MOPS028 An Ion Beam Matching to a Linac Accelerating-focusing Channel 661
 
  • A. Orzhekhovskaya, W.A. Barth, G. Clemente, L.A. Dahl, P. Gerhard, L. Groening, M. Kaiser, M.T. Maier, S. Mickat, B. Schlitt, H. Vormann, S.G. Yaramyshev
    GSI, Darmstadt, Germany
  • U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by HIC for FAIR
A modern linear accelerator of ions is a long chain of different accelerating-focusing structures. The design of new linacs, as well as an upgrade and optimization of operating facilities, requires precise and reliable beam matching with the subsequent sections. Proper matching of the beam to the channel allows to improve the performance of the whole linac and to reduce the specific costs. Additionally it helps to avoide particle loss in high energy high intensity linacs. Generally a matching algorithm combines precisely measured or calculated accelerating-focusing external fields and experimentally obtained details of the beam parameters with an advanced code for beam dynamics simulations including space charge effects. Experimental results are introduced into a code as input data. The described algorithm has already been successfully implemented for several GSI projects: an upgrade of the GSI heavy ion linac UNILAC, an ion linac for the cancer therapy, the proton linac for the FAIR facility, a facility for laser acceleration of ions and others. Measured data and results of beam dynamics simulations leading to an achieved improvement of the linac performance are presented.
 
 
MOPS029 Experiments with a Fast Chopper System for Intense Ion Beams 664
 
  • H. Dinter, M. Droba, M. Lotz, O. Meusel, I. Müller, D. Noll, U. Ratzinger, K. Schulte, C. Wagner, C. Wiesner
    IAP, Frankfurt am Main, Germany
 
  Chopper systems are used to pulse charged particle beams. In most cases, electric deflection systems are used to generate beam pulses of defined lengths and appropriate repetition rates. At high beam intensities, the field distribution of the chopper system needs to be adapted precisely to the beam dynamics in order to avoid aberrations. An additional challenge is a robust design which guarantees reliable operation. For the Frankfurt Neutron Source FRANZ, an E×B chopper system is being developed which combines static magnetic deflection with a pulsed electric field in a Wien filter configuration. It will generate proton pulses with a flat top of 50 ns at a repetition rate of 250 kHz for 120 keV, 200 mA beams. For the electric deflection, pre-experiments with static and pulsed fields were performed using a helium ion beam. In pulsed mode operation, ion beams of different energies were deflected with voltages of up to ±6 kV and the resulting response was measured using a beam current transformer. A comparison between experiments and theoretical calculations as well as numerical simulations are presented.  
 
MOPS030 Beam Dynamics of the FRANZ Bunch Compressor using Realistic Fields with a Focus on the Rebuncher Cavities 667
 
  • D. Noll, L.P. Chau, M. Droba, O. Meusel, H. Podlech, U. Ratzinger, C. Wiesner
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by HIC for FAIR.
The ARMADILLO bunch compressor currently being designed at IAP is capable of reaching a longitudinal pulse compression ratio of 45 for proton beams of 150 mA at 2 MeV. It will provide one nanosecond proton pulses with a peak current of 7.7 A. The system guides nine linacμbunches deflected by a 5 MHz rf kicker and uses four dipole magnets - two homogeneous and two with field gradients - to merge them on the target. For longitudinal focusing and an energy variation of ±200 keV two multitrack rf cavities are included. ARMADILLO will be installed at the end of the Frankfurt Neutron Source FRANZ making use of the unique 250 kHz time structure. This contribution will provide an overview of the layout of the system as well as recent advances in component design and beam dynamics of the compressor.
 
 
MOPS031 Beam Dynamics Redesign of IFMIF-EVEDA RFQ for a Larger Input Beam Acceptance 670
 
  • M. Comunian, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  For the IFMIF-EVEDA RFQ, a very challenging project of a deuteron CW RFQ at 175 MHz from 0.1 MeV to 5 MeV with 125 mA of current, the input beam characteristics are very important. A lower focusing force in the first part of the RFQ as beam implemented in order to reduce the requirements of the input beam. In the article a full description of the new design will be reported with the changes in the RFQ performances.  
 
MOPS033 Beam Dynamics Studies on the 100 MeV/100 kW Electron Linear Accelerator for NSC KIPT Neutron Source 673
 
  • S. Pei, Y.L. Chi, M. Hou, W.B. Liu, G. Pei, S.H. Wang, Z.S. Zhou
    IHEP Beijing, Beijing, People's Republic of China
  • N. Aizatsky, I.M. Karnaukhov, V.A. Kushnir, V. Mitrochenco, A.Y. Zelinsky
    NSC/KIPT, Kharkov, Ukraine
 
  We designed one 100MeV/100kW electron linear accelerator for NSC KIPT, which will be used to drive a neutron source on the base of subcritical assembly. Beam dynamics studies has been conducted to reach the design requirement (E=100MeV, P=100kW, dE/E<1% for 99% particles). In this paper, we will present the progress of the design and dynamics simulation results. For high intensity and long beam pulse linear accelerators, BBU effect is one big issue; special care has been taken in the accelerating structure design. To satisfy the energy spread requirement at the linac exit, the particles with large energy difference from the synchronous particle should be eliminated at low energy stage to ease the design of the collimation system and radiation shielding. A dispersion free chicane with 4 bending magnets is introduced at the downstream of the 1st accelerating section; the unwanted particles will be collimated there.  
 
MOPS034 Progress on Space Charge Compensation Study in Low Energy High Intense H+ Beam* 676
 
  • P.N. Lu, Z.Y. Guo, S.X. Peng, Z.X. Yuan, J. Zhao
    PKU/IHIP, Beijing, People's Republic of China
  • H.T. Ren
    Graduate University, Chinese Academy of Sciences, Beijing, People's Republic of China
 
  This article lays emphasis on the relationship between the Space Charge Compensation (SCC) and the beam quality in different conditions. Ar and Kr are used to compensate a 35keV/90mA H+ beam with the gas pressure from 3.7×10-4 Pa to 6×10-3 Pa. Experiments are conducted in different compensation states with three approaches. With an energy spectrometer, we have got the energy spectra of Extra Compensation Gas Ions (ECGI). By a beam profile meter, the beam profiles are obtained when the injection of compensation gas is gradually rising. In the meantime, the beam emittance is measured under different compensation conditions. After measurements of the above data, the potential and the rest charge distributions in the beam are calculated by analyzing the ECGI energy spectra and beam profiles. All experiments performed aimed to seek out the best circumstance for SCC dominated low energy high intensity ion beams.together to calculate the potential distribution are calculated by analyzing the energy spectra and beam profiles. All experiments performed aimed to seeking for the best circumstances in SCC dominated low energy high intensity ion beams.  
 
MOPS035 Energy Spreads by Transient Beam Loading Effect in Pulsed RF Linac 679
 
  • S.H. Kim, M.-H. Cho, G. Ha, H.R. Yang
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • W. Namkung, S.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
  • J.-S. Oh
    NFRI, Daejon, Republic of Korea
 
  Funding: Work partly supported by KAPRA and POSTECH Physics BK21 Program
RF linacs for high power beams are operated in the fully beam-loaded condition for the power efficiency. In this condition, temporal energy spreads are induced by the transient beam loading effect. Irradiation sources require the beam energy of less than 10 MeV to prevent undesirable neutron production. In order to maximize the beam power and maintain the beam energy in a safe value, we need to suppress the temporal energy spreads. In an L-band traveling-wave linac for irradiation sources, the high energy electrons are suppressed by the beam current modulation with the RF power modulation. As a result, the average beam energy and the corresponding beam power are improved by nearly 60% compared to the case without any modulations.
 
 
MOPS037 High Intensity Transient Beam Dynamic Study in Travelling Wave Electron Accelerators with Accounting of Beam Loading Effect 682
 
  • S.M. Polozov, T.V. Bondarenko, E.S. Masunov, V.I. Rashchikov, A.V. Voronkov
    MEPhI, Moscow, Russia
 
  The beam loading effect is one of main problems limiting the beam current. The methods of beam dynamic simulation taking into account the beam loading effect were discussed previously. Simulation methods and the especial code version BEAMDULAD-BL was described in the paper*. The beam loading effect was considered only for traveling wave linacs and for stationary beam only. Now it is important to study the beam dynamics of short current pulses, i.e. for transient process. We can consider only one beam bunch (or a packet of bunches) in a long external RF field pulse in stationary case. The beam radiation and wave fields can be calculated in the quasi-statically approximation. This approximation can not be used for transient mode. The methods of beam dynamics simulation will be discussed in this paper for transient mode. New code version BEAMDULAC-BLNS will be described. The simple test simulations will be carried out.
* A.V. Voronkov et al., "Beam Loading Effect of High Current Trawling Wave Accelerator Dynamic Study", Proc. of IPAC’10, Kyoto, Japan, TUPEA012, p. 1348 (2010).
 
 
MOPS038 3D Beam Dynamic Simulation in Heavy Ion Superconducting Drift Tube Linac 685
 
  • A.V. Samoshin, S.M. Polozov
    MEPhI, Moscow, Russia
 
  The superconducting (SC) linac conventionally consists of some different classes of the identical cavities. Each cavity is based on a SC structure with a high accelerating gradient. The low charge state beams require stronger transverse focusing. This focusing can be reached with the help of SC solenoid lenses. In this paper beam dynamics simulation obtain by smooth approximation and full field. Traditionally only the Coulomb field is taken into account for low energy beams. In this paper the computer simulation of heavy ion beam dynamics in superconducting (SC) linac will carried out by means of the "particle-in-cell" method. Simulation results will present.  
 
MOPS039 High Power Proton Linac Front-End: Beam Dynamics Investigation and Plans for the ESS 688
 
  • A. Ponton
    ESS, Lund, Sweden
 
  Beam availibility is one of the major concerns for the designer of high power proton linacs. Since the Radio-Frequency Quadrupole (RFQ) will shape and accelerate the beam in the early stage of its propagation it will have a significant impact on the particle dynamics throughout the rest of the linac. The key role of the RFQ is consequently to deliver high quality beams with optimal transmission. Furthermore understanding the space charge compensation mechanism in the Low Energy Beam Transport line (LEBT) is mandatory if one wants to perform calculations with realistic beams. The European Spallation Source (ESS) has put important R&D efforts in designing the linac front-end and deep beam dynamics studies have been undertaken. Results of the investigation work will be presented. We will then deal with the future plans for the ESS and we will finally give a full description of the RFQ and LEBT scheme.  
 
MOPS040 Intra-Bunch Energy Spread of Electrons in Powerful RF Linacs for Nuclear Physics Research* 691
 
  • V.V. Mytrochenko, M.I. Ayzatskiy, V.A. Kushnir, A. Opanasenko, S.A. Perezhogin, V.L. Uvarov
    NSC/KIPT, Kharkov, Ukraine
 
  Funding: Ukrainian State program of fundamental and applied studies on the use of nuclear materials, nuclear and radiation technologies in the fields of economics (YaMRT project No. 826/35)
There are some particles in RF electron linacs with energy that may be significantly different from that of particles within a core of the bunch. Loss of these particles at average beam power of tens of kilowatts can cause radiation and thermal problems. Filtration of such particles during the initial stage of acceleration, at energies below the threshold of photonuclear reactions, is important. The paper analyzes several ways to perform such type of filtration in the injector part of a powerful electron linac using a RF chopper or magnetic systems.
 
 
MOPS042 One-Dimensional Adiabatic Child-Langmuir Flow 694
 
  • C. Chen
    MIT, Cambridge, Massachusetts, USA
  • R. Pakter, F.B. Rizzato
    IF-UFRGS, Porto Alegre, Brazil
 
  Funding: Research supported in part by US Department of Energy, Grant No. DE-FG02-95ER40919, CNPq, FAPERGS, INCTFCx of Brazil, and US Air Force Office of Scientific Research, Grant No. FA9550-09-1-0283.
A theory is presented that describes steady-state one-dimensional Child-Langmuir flow at a self-consistent finite temperature distribution. In particular, warm-fluid equations and adiabatic equation of state are used to derive the self-consistent Poisson equation. The profiles of the charged-particle density, the velocity, the electrostatic potential, the pressure and the temperature are computed. Results are compared with self-consistent simulations.
 
 
MOPS043 Beam Performance in H Injector of LANSCE 697
 
  • Y.K. Batygin, C. Pillai, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
 
  During beam development time in 2010 we performed a series of beam emittance and beam profile scans along 750-keV H beam transport and 800-MeV linac. The purpose of the measurements was to determine the effects of space charge, slow-wave intensity modulation or chopping, RF buncher fields, and vacuum conditions on beam performance. As previously reported*, from our observation and analysis we concluded that the 750 keV H beam transport is space-charge uncompensated. This presentation will look at the relative importance of space-charge, chopping, and RF-buncher on the observed emittance growth for beam in the short and long pulse regime as well as the effects of beam line vacuum degradation on beam size and emittance at the end of the linac.
* Y. Batygin et al., “Space-charge effects in H Low-Energy Beam Transport of LANSCE,” to be published in Proc. of the 2011 Particle Accelerator Conference, March 28-April 1, 2011, New York, NY.