04 Hadron Accelerators
T01 Proton and Ion Sources
Paper Title Page
THPS020 Development of C6+ Laser Ion Source 3460
 
  • A. Yamaguchi
    Toshiba Corporation, Power And Industrial Systems Research and Development Center, Yokohama, Japan
 
  A C6+ laser ion source has been developed for a heavy ion accelerator, which supplies pulsed ion beam for single-turn injection system of a synchrotron by one laser shot. A graphite plate is irradiated with a Q-switched Nd:YAG laser (1064 nm of wavelength, 1.4 J of maximum laser energy, 10 ns of pulse duration) to generate carbon ions. The characteristics of the ion beam were studied by using the time-of-flight mass spectroscopy and the magnetic momentum analyzer. Results of the experiments are presented.  
 
THPS021 Methods to Obtain High Intensity Proton Ion Beams with Low Emittance from ECR Ion Source at Peking University 3463
 
  • H.T. Ren
    Graduate University, Chinese Academy of Sciences, Beijing, People's Republic of China
  • J.E. Chen, Z.Y. Guo, P.N. Lu, S.X. Peng, Z.Z. Song, J.X. Yu, M. Zhang, J. Zhao, Q.F. Zhou
    PKU/IHIP, Beijing, People's Republic of China
 
  Funding: Supported by the National Science Foundation of China 11075008.
With the development of accelerator technology, to obtain an ion beam with high intensity and low emittance is becoming one of the main goals of research for ion sources. At Peking University we have developed several 2.45 GHz electron cyclotron resonance (ECR) ion sources for different projects and we paid close attention to the beam intensity increasing as well as the beam emittance reduction. Methods are adopted to improve beam intensity by increasing the density of plasma inside the discharge chamber, optimizing the geometry pinch effect and the perveance at the extraction aperture. To suppress the emmitance increasing of an extracted beam, the shape of the electrodes as well as the voltage of suppression electrode are carefully selected With these efforts, a 120 mA total proton beam has been extracted from the permanent magnet ECR ion source at 50 kV, and the measured normalized rms emittance is less than 0.2 pi.mm.mrad. The beam current density at the extraction aperture is about 420 mA/cm2.
 
 
THPS022 Improvement of the 20 MeV Proton Accelerator at KAERI 3466
 
  • H.-J. Kwon, Y.-S. Cho, J.-H. Jang, D.I. Kim, H.S. Kim, K.T. Seol, Y.-G. Song
    KAERI, Daejon, Republic of Korea
 
  Funding: This work is supported by the Ministry of Science and Technology of the Korean government.
The 20 MeV proton accelerator has been operating since 2007 when it got a operational license at Korea Atomic Energy Research Institute (KAERI) by Proton Engineering Frontier Project (PEFP). A microwave ion source was newly developed to satisfy the requirement of minimum 100 hour operation time without maintenance. After the long time operation test at test bench, it was installed to drive the 20 MeV proton accelerator. The beam profile and emittance were measured to check the characteristics of the accelerator both at the LEBT and at the end of the 20 MeV DTL. In this paper, the microwave ion source is presented and the measurement results of the beam property are discussed.
 
 
THPS023 Automatic Tuner Unit Design, Simulation and Measurement for Automatic Operation of the RF System in the ESS-Bilbao H+ Ion Source 3469
 
  • L. Muguira, I. Arredondo, D. Belver, M. Eguiraun, F.J. Fernandez Huerta, J. Feuchtwanger, N. Garmendia, O. Gonzalez, J. Verdu
    ESS-Bilbao, Zamudio, Spain
  • V. Etxebarria, J. Jugo, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  Funding: The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
The Ion Source responsible intended to generate a high current and low emittance proton beam for the ESS-Bilbao is currently under construction. The plasma in the source is generated by coupling the 2.72 GHz power input from a Klystron through a magnetic field with an intensity close to the electron cyclotron resonance (ECR) field at the input RF frequency. The electrical behavior of the plasma strongly depends on different plasma characteristics which, at the same time, also depend on the microwave absorption. Thus, in order to maximize the RF power transferred to the plasma, a waveguide automatic tuner unit is employed to match the generator output to the electric impedance of the plasma. This device is generally adjusted manually. In this paper, the design, the 1D and 3D simulation, and measurements are presented which allows us to propose an automatic and real time control of the device. In a first approximation, with the aim of testing the proper operation of the automatic tuner unit, an in-house variable phase shifter and attenuator has been designed and manufactured to simulate the electric behavior of the plasma.
 
 
THPS025 Overview of the Status and Developments on Primary Ion Sources at CERN 3472
 
  • R. Scrivens, M. Kronberger, D. Kuchler, J. Lettry, O. Midttun, M.M. Paoluzzi, H. Pereira, C. Schmitzer
    CERN, Geneva, Switzerland
 
  Funding: This project has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under the Grant Agreement no 212114.
CERN has 2 operational primary beam ion sources, that are presently used for the production of beam for LHC as well as several other facilities. Protons are produced by a duoplasmatron source, and ions from the GTS-LHC ECR ion source. In addition, new sources are required for a new 160MeV H Linac, and development has been made on a high power RF plasma generator which could serve for a future high power Linac. In this report, the present status will be given, along with operational statistics and experience for the operation sources, and the development programme reported for the future sources.
 
 
THPS026 Surface Plasma H Ion Source with Saddle RF Antenna Plasma Generator 3475
 
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Batavia, USA
  • S.N. Murray, T.R. Pennisi, M. Santana, M.P. Stockli, R.F. Welton
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: *Work supported in part by US DOE Contract DE-AC05-00OR22725 and by STTR grant DE-SC0002690.
In this project is developed a prototype RF H surface plasma source (SPS) with saddle (SA) RF antenna which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with a small AlN test chamber and different antennas and magnetic field configurations were tested in the SNS ion source Test Stand. A prototype SA SPS was installed in the Test Stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency of 1.6 mA/kW. Control experiments with H beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma source (TPS) has been designed. A Saddle antenna SPS with water cooling is being fabricated for high duty factor testing.
 
 
THPS027 Cesiation in Highly Efficient Surface Plasma Sources 3478
 
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Batavia, USA
 
  Funding: Work supported in part by STTR grant DE-SC0002690.
Features of cesiation* in different modifications of H-/D- source designs have been considered. New sources under development include advanced versions of Compact Surface Plasma Sources (CSPS) which will efficiently generate brighter beam in noiseless discharge, deliver significantly increased (up to 20 mA) average current with better electrode cooling using new materials, have significantly extended lifetime and reduced cesium consumption. Related ion sources that use cesium are described and an improved cesiation procedure for reproducible production of high efficiency H ion generation is considered.
* V. Dudnikov, SU Author Certificate, C1.H01 3/04, No. 411542, 10 March, 1972.
 
 
FRXBA01
Recent Developments in Hadron Sources  
 
  • J.G. Alessi
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Recent concepts, developments, and experimental results in the operation and commissioning of sources for protons, H-, and heavy ions will be presented.
 
slides icon Slides FRXBA01 [3.674 MB]