Author: Pullia, M.
Paper Title Page
MOPO039 B-train Performances at CNAO 568
 
  • M. Pezzetta, G. Bazzano, E. Bressi, L. Falbo, C. Priano, M. Pullia
    CNAO Foundation, Milan, Italy
  • O. Coiro, G. Franzini, D. Pellegrini, M. Serio, A. Stella
    INFN/LNF, Frascati (Roma), Italy
  • G. Venchi
    University of Pavia, Pavia, Italy
 
  The commissioning of CNAO, the Italian Centre of Oncological Hadrontherapy, with proton beams is completed. The real-time measurement of the synchrotron dipole field with the so-called B-train, together with its electronic systems and related software and firmware are here described. An additional magnet, powered in series with the synchrotron dipoles, is equipped with a special coil that measures the field integral variation along the beam nominal path. The voltage induced in the coil is digitized with a fast ADC and numerically integrated by an FPGA. The field integral is then distributed to the users every time that the equivalent field changes by 0.1 G. The measured B field ranges from 0 to 1.6 T with maximum ramps of 3 T/s. The B-train system will be used to provide feedback in field to the dipole power supply. It will handle the limited bandwidth of the active filter, the B-field lag in the magnets and will avoid current jumps.  
 
THOAA01 Beam Diagnostics Commissioning at CNAO 2848
 
  • H. Caracciolo, G. Balbinot, G. Bazzano, J. Bosser, M. Caldara, A. Parravicini, M. Pullia, C. Viviani
    CNAO Foundation, Milan, Italy
 
  The National Centre for Oncological Hadrontherapy (CNAO) is the first Italian facility for the treatment of deep located tumors with proton and carbon ion beams using active scanning. The commissioning with proton beams is concluded and CNAO is going to start treating patients with protons; in the meantime the machine commissioning with carbon ions beam is going on. Beam diagnostics instrumentation is fundamental to measure beam properties along the lines from sources to patients. Some significant measurements performed during proton beam commissioning and the performances achieved with the CNAO beam diagnostic systems are presented in this paper.  
slides icon Slides THOAA01 [4.827 MB]  
 
WEPS007 CNAO Synchrotron Commissioning 2496
 
  • C. Priano, G. Balbinot, G. Bazzano, J. Bosser, E. Bressi, M. Caldara, H. Caracciolo, L. Falbo, A. Parravicini, M. Pullia, C. Viviani
    CNAO Foundation, Milan, Italy
  • C. Biscari, A. Ghigo
    INFN/LNF, Frascati (Roma), Italy
 
  The CNAO (National Center for Oncological Hadrontherapy), located in Pavia, is the first Italian center for deep hadrontherapy with proton and carbon ion beams. The CNAO synchrotron initial commissioning has been carried out using proton beams in the full range of energies: 60 to 250 MeV/u. The first foreseen treatments will need energies between 120 and 170 MeV/u. The nominal proton currents have been reached. The energy scaling of the synchrotron systems and parameters leads to an extracted energy that matches the measured particle range better than 0.1 mm, fitting the treatment requirements, with repeatable beam size and beam current in the treatment room at all investigated energies. A summary of the main results of the synchrotron commissioning is presented.  
 
THPS069 Particle Beam Characteristics Verification for Patient Treatment at CNAO 3586
 
  • M. Donetti, M. Ciocca, M.A. Garella, A. Mirandola, S. Molinelli, M. Pullia, G. Vilches Freixas
    CNAO Foundation, Milan, Italy
  • S. Giordanengo
    INFN-Torino, Torino, Italy
  • M. Lavagno
    DE.TEC. TOR. S.r.l., Torino, Italy
  • R. Sacchi
    Torino University, ., Torino, Italy
 
  At Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia, Italy, a synchrotron has been designed to treat tumor with protons and ions delivered with a full active delivery system. Several pencil beams with appropriate energy are steered in sequence to the right positions inside the tumor volume covering it totally. Several beam characteristics have to be deeply known in order to be able to deliver a safe patient treatment. CNAO is now able to send beam in the treatment room and the Dose Delivery system is in the commissioning phase. Dose Delivery system, composed by beam monitoring and scanning magnets, manages the treatment with high precision in real time. The dose delivery system functions and components will be presented. Beam characteristic are studied by means of several detectors and verification systems in the treatment room to guarantee the quality of the treatment. Quality is checked in terms of pencil beam characteristics and characteristic of the overall dose in the treatment fields. The detector used and the results of the measurements will be shown.  
 
THPS070 Status Report of the CNAO Construction and Commissioning 3589
 
  • M. Pullia
    CNAO Foundation, Milan, Italy
 
  The CNAO (National Center for Oncological Hadrontherapy) is the first Italian center for deep hadrontherapy. The main accelerator is a synchrotron, based on the PIMMS design, capable to accelerate carbon ions up to 400 MeV/u and protons up to 250 MeV. Four treatment lines, in three treatment rooms, are foreseen in a first stage. The CNAO facility, has been designed for a completely active beam delivery system, in which a pencil beam is scanned transversely and the extracted beam energy can be changed on a spill to spill basis. The commissioning of the synchrotron started in August 2010. At the beginning of 2011 the first Spread Out Bragg Peaks with proton beams in the energy range 120-170 MeV/u, matching the first foreseen treatments, have been measured. The commissioning of the machine with protons has now been completed and authorisation to treatment of patients has been obtained from the competent authorities. The commissioning with carbon ions is in progress.