Author: Métral, E.
Paper Title Page
MOPS013 Transverse Low Frequency Broad-band Impedance Measurements in the CERN PS 622
 
  • S. Aumon
    EPFL, Lausanne, Switzerland
  • P. Freyermuth, S.S. Gilardoni, O. Hans, E. Métral, G. Rumolo
    CERN, Geneva, Switzerland
 
  The base-line scenario for the High-Luminosity LHC upgrade foresees an intensity increase delivered by the injectors. With its 53 years, the CERN PS would have to operate beyond the limit of its performances to match the future requirements. Beam instabilities driven by transverse impedance are an important issue for the operation of high intensity beams as for the high-brightness LHC beams. Measurements of transverse tune dependence with beam intensity were performed at injection kinetic energy 1.4~GeV and at LHC beam extraction momentum 26~GeV/c. This allows deducing the low frequency inductive broad-band impedance of the machine. Then an estimation of the real part of the impedance is made by the rise time measurement of a fast transverse instability believed to be a TMCI type. Those are the first step towards a global machine impedance characterization in order to push forward the performances of the accelerator.  
 
MOPS068 Localization of Transverse Impedance Sources in the SPS using HEADTAIL Macroparticle Simulations 757
 
  • N. Biancacci, G. Arduini, E. Métral, D. Quatraro, G. Rumolo, B. Salvant, R. Tomás
    CERN, Geneva, Switzerland
  • N. Biancacci, M. Migliorati, L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • R. Calaga
    BNL, Upton, Long Island, New York, USA
 
  In particle accelerators, beam coupling impedance is one of the main contributors to instability phenomena that lead to particle losses and beam quality deterioration. For this reason these machines are continuously monitored and the global and local amount of impedance needs to be evaluated. In this work we present our studies on the local transverse impedance detection algorithm. The main assumptions behind the algorithm are described in order to understand limits in reconstructing the impedance location. The phase advance response matrix is analyzed in particular for the SPS lattice, studying the different response from 90,180,270 degrees phase advance sections. The thin lenses scheme is also implemented and new analytical formulas for phase advance beating were derived. This avails us to put reconstructing lenses everywhere in the lattice, and to study their positioning scheme. Limits in linear response are analyzed. This sets the upper and lower limits in reconstruction to the phase advance measurement accuracy and the linear response regime limit.  
 
MOPS070 Electromagnetic Modeling of C Shape Ferrite Loaded Kickers 763
 
  • C. Zannini
    EPFL, Lausanne, Switzerland
  • E. Métral, G. Rumolo, B. Salvant, V.G. Vaccaro, C. Zannini
    CERN, Geneva, Switzerland
 
  The kickers are major contributors to the CERN SPS beam coupling impedance. As such, they may represent a limitation to increasing the SPS bunch current in the frame of an intensity upgrade of the LHC. In this paper, analytical approach and CST Particle Studio time domain electromagnetic simulations are performed to obtain the longitudinal and transverse impedances/wake potentials of models of ferrite loaded kickers. It turns out that the existing models are not sufficient to characterize correctly these components from the coupling impedance point of view. In particular the results show that below few hundred MHz the real C-structure of the magnet cannot be neglected. Therefore an analytical model was developed and benchmarked with EM simulations to take into account the C-shape of the magnet.  
 
MOPS071 Simulations of the Impedance of the New PS Wire Scanner Tank 766
 
  • B. Salvant
    EPFL, Lausanne, Switzerland
  • W. Andreazza, F. Caspers, A. Grudiev, J.F. Herranz Alvarez, E. Métral, G. Rumolo
    CERN, Geneva, Switzerland
 
  The CERN PS is equipped with 4 wire scanners. It was identified that the small aperture of the current wire scanner tank causes beam losses and a new tank design was needed. The interaction of the PS bunches with the beam coupling impedance of this new tank may lead to beam degradation and wire damage. This contribution presents impedance studies of the current PS tank as well as the new design in order to assess the need to modify the design and/or install lossy materials plates dedicated to damp higher order cavity modes and reduce the total power deposited by the beam in the tank.  
 
MOPS072 Broadband Electromagnetic Characterization of Materials for Accelerator Components 769
 
  • C. Zannini, A. Grudiev, E. Métral, T. Pieloni, G. Rumolo
    CERN, Geneva, Switzerland
  • G. De Michele
    PSI, Villigen, Switzerland
  • C. Zannini
    EPFL, Lausanne, Switzerland
 
  Electromagnetic (EM) characterization of materials up to high frequencies is a major requirement for the correct modeling of many accelerator components: collimators, kickers, high order modes damping devices for accelerating cavities. In this scenario, the coaxial line method has gained much importance compared to other methods because of its applicability in a wide range of frequencies. In this paper we describe a new coaxial line method that allows using only one measurement setup to characterize the material in a range of frequency from few MHz up to several GHz. A coaxial cable fed at one side is filled with the material under test and closed on a known load on the other side. The properties of the material are obtained from the measured reflection coefficient by using it as input for a transmission line (TL) model or for 3D EM simulations, which describe the measurements setup. We have applied this method to characterize samples of SiC (Silicon Carbide) which could be used for LHC collimators and for CLIC accelerating structures and NiZn ferrite used for kicker magnets.  
 
MOPS073 Impedance Calculation for Simple Models of Kickers in the Non-ultrarelativistic Regime 772
 
  • N. Biancacci, N. Mounet, E. Métral, B. Salvant, C. Zannini
    CERN, Geneva, Switzerland
  • N. Biancacci, M. Migliorati, A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • Q. Qin, N. Wang
    IHEP Beijing, Beijing, People's Republic of China
 
  Kicker magnets are usually significant contributors to the beam coupling impedance of particle accelerators. An accurate understanding of their impedance is required in order to correctly assess the machine intensity limitations. The field matching method derived by H. Tsutsui for the longitudinal and transverse dipolar (driving) impedance of simple models of kickers in the ultrarelativistic regime was already extended to the non-ultrarelativistic case, and to the quadrupolar (detuning) impedance in the ultrarelativistic case. This contribution presents the extension to the quadrupolar impedance in the non-ultrarelativistic case, as well as benchmarks with other available methods to compute the impedance. In particular, all the components of the impedances are benchmarked with Tsutsui's model, i.e. in the ultrarelativistic limit, with the model for a flat chamber impedance recently computed by N. Mounet and E. Métral, in the case of finite relativistic gamma, and with CST Particle Studio simulations.  
 
MOPS074 Stabilization of the LHC Single-bunch Transverse Instability at High-energy by Landau Octupoles 775
 
  • E. Métral, B. Salvant
    CERN, Geneva, Switzerland
  • N. Mounet
    EPFL, Lausanne, Switzerland
 
  When the first ramp was tried on Saturday 15/05/2010 with a single bunch of about nominal intensity (i.e. ~ 1011 p/b), the bunch became unstable in the horizontal plane at ~ 2 TeV. The three main observations were: (i) a “Christmas tree” in the transverse tune measurement application (with many synchrotron sidebands excited), (ii) beam losses (few tens of percents) in IR7, and (iii) an increase of the bunch length. This transverse coherent instability has been stabilized successfully with Landau octupoles. Comparing all the measurements performed during this first year of LHC commissioning with the theoretical and simulation predictions reveals a good agreement.  
 
MOPS075 Simulation of Multibunch Motion with the HEADTAIL Code and Application to the CERN SPS and LHC 778
 
  • N. Mounet
    EPFL, Lausanne, Switzerland
  • N. Mounet, E. Métral, G. Rumolo
    CERN, Geneva, Switzerland
 
  Multibunch instabilities due to beam-coupling impedance can be a critical limitation for synchrotrons operating with many bunches. It is particularly true for the LHC under nominal conditions, where according to theoretical predictions the 2808 bunches rely entirely on the performance of the transverse feedback system to remain stable. To study these instabilities, the HEADTAIL code has been extended to simulate the motion of many bunches under the action of wake fields. All the features already present in the single-bunch version of the code, such as synchrotron motion, chromaticity, amplitude detuning due to octupoles and the ability to load any kind of wake fields through tables, have remained available. This new code has been then parallelized in order to track thousands of bunches in a reasonable amount of time. The code was benchmarked against theory and exhibited a good agreement. We also show results for bunch trains in the LHC and compare them with beam-based measurements.  
 
MOPS078 Coaxial Wire Measurements of Ferrite Kicker Magnets 784
 
  • H.A. Day, R.M. Jones
    UMAN, Manchester, United Kingdom
  • M.J. Barnes, F. Caspers, H.A. Day, E. Métral, B. Salvant, C. Zannini
    CERN, Geneva, Switzerland
 
  Fast kicker magnets are used to inject beam into and eject beam out of the CERN accelerator rings. These kickers are generally transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the yoke can provoke significant beam induced heating, especially for high intensities. In addition the impedance may contribute to beam instabilities. The results of longitudinal and transverse impedance measurements, for various kicker magnets, are presented and compared with analytical calculations: in addition predictions from a numerical analysis are discussed.  
 
MOPS079 Simulations of Coaxial Wire Measurements of the Impedance of Asymmetric Structures 787
 
  • H.A. Day, R.M. Jones
    UMAN, Manchester, United Kingdom
  • F. Caspers, H.A. Day, E. Métral
    CERN, Geneva, Switzerland
 
  Coaxial wire measurements have provided a simple and effective way to measure the beam coupling impedance of accelerator structures for a number of years. It has been known how to measure the longitudinal and dipolar transverse impedance using one and two wires for some time. Recently the ability to measure the quadrupolar impedance of structures exhibiting top/bottom and left/right symmetry has been demonstrated. A method for measuring the beam coupling impedance of asymmetric structures using displaced single wires and two wire measurements is proposed. Simulations of the measurement system are presented with further work proposed.  
 
MOPS080 Comparison of the Current LHC Collimators and the SLAC Phase 2 Collimator Impedances 790
 
  • H.A. Day, R.M. Jones
    UMAN, Manchester, United Kingdom
  • F. Caspers, H.A. Day, E. Métral, B. Salvant
    CERN, Geneva, Switzerland
 
  One of the key sources of transverse impedance in the LHC has been the secondary graphite collimators that sit close to the beam at all energies. This limits the stable bunch intensity due to transverse coupled-bunch instabilities and transverse mode coupling instability. To counteract this, new secondary collimators have been proposed for the phase II upgrade of the LHC collimation system. A number of designs based on different jaw materials and mechanical designs have been proposed. A comparison of the beam coupling impedance of these different designs derived from simulations are presented, with reference to the existing phase I secondary collimator design.  
 
TUPZ015 Electron Cloud Parameterization Studies in the LHC 1834
 
  • C.O. Domínguez, G. Arduini, V. Baglin, G. Bregliozzi, J.M. Jimenez, E. Métral, G. Rumolo, D. Schulte, F. Zimmermann
    CERN, Geneva, Switzerland
 
  During LHC beam commissioning with 150, 75 and 50-ns bunch spacing, important electron-cloud effects, like pressure rise, cryogenic heat load, beam instabilities or emittance growth, were observed. The main strategy to combat the LHC electron cloud relies on the surface conditioning arising from the chamber-surface bombardment with cloud electrons. In a standard model, the conditioning state of the beam-pipe surface is characterized by three parameters: 1. the secondary emission yield; 2. the incident electron energy at which the yield is maximum; and 3. the probability of elastic reflection of low-energy primary electrons hitting the chamber wall. Since at the LHC no in-situ secondary-yield measurements are available, we compare the relative local pressure-rise measurements taken for different beam configurations against simulations in which surface parameters are scanned. This benchmark of measurements and these simulations is used to infer the secondary-emission properties of the beam-pipe at different locations around the ring and at various stages of the surface conditioning. In this paper we present the methodology and first results from applying the technique to the LHC.  
 
MOPS009 Probing Intensity Limits of LHC-type Bunches in the CERN SPS with Nominal Optics 610
 
  • B. Salvant, G. Adrian, D.J. Allen, O. Andujar, T. Argyropoulos, J. Axensalva, J. Baldy, H. Bartosik, S. Cettour Cave, F. Chapuis, J.F. Comblin, K. Cornelis, D.G. Cotte, K. Cunnington, H. Damerau, M. Delrieux, J.L. Duran-Lopez, A. Findlay, J. Fleuret, F. Follin, P. Freyermuth, H. Genoud, S.S. Gilardoni, A. Guerrero, S. Hancock, K. Hanke, O. Hans, R. Hazelaar, W. Höfle, L.K. Jensen, J. Kuczerowski, Y. Le Borgne, R. Maillet, D. Manglunki, S. Massot, E. Matli, G. Metral, B. Mikulec, E. Métral, J.-M. Nonglaton, E. Ovalle, L. Pereira, F.C. Peters, A. Rey, J.P. Ridewood, G. Rumolo, J.L. Sanchez Alvarez, E.N. Shaposhnikova, R.R. Steerenberg, R.J. Steinhagen, J. Tan, B. Vandorpe, E. Veyrunes
    CERN, Geneva, Switzerland
 
  Some of the upgrade scenarios of the high-luminosity LHC require large intensity per bunch from the injector chain. Single bunch beams with intensities of up to 3.5 to 4·1011 p/b and nominal emittances were successfully produced in the PS Complex and delivered to the SPS in 2010. This contribution presents results of studies with this new intense beam in the SPS to probe single bunch intensity limitations with nominal gamma transition. In particular, the vertical Transverse Mode Coupling Instability (TMCI) threshold with low chromaticity was observed at 1.6·1011 p/b for single nominal LHC bunches in the SPS. With increased vertical chromaticity, larger intensities could be injected, stored along the flat bottom and accelerated up to 450 GeV/c. However, significant losses and/or transverse emittance blow up were then observed. Longitudinal and transverse optimization efforts in the PSB, PS and SPS were put in place to minimize this beam degradation and succeeded to obtain single 2.3·1011 p/b LHC type bunches with satisfying parameters at extraction of the SPS.  
 
TUPS026 Specification of New Vacuum Chambers for the LHC Experimental Interactions 1584
 
  • R. Veness, R.W. Assmann, A. Ball, A. Behrens, C. Bracco, G. Bregliozzi, R. Bruce, H. Burkhardt, G. Corti, M.A. Gallilee, M. Giovannozzi, B. Goddard, D. Mergelkuhl, E. Métral, M. Nessi, W. Riegler, J. Wenninger
    CERN, Geneva, Switzerland
  • N. Mounet, B. Salvant
    EPFL, Lausanne, Switzerland
 
  The apertures for the vacuum chambers at the interaction points inside the LHC experiments are key both to the safe operation of the LHC machine and to obtaining the best physics performance from the experiments. Following the successful startup of the LHC physics programme the ALICE, ATLAS and CMS experiments have launched projects to improve physics performance by adding detector layers closer to the beam. To achieve this they have requested smaller aperture vacuum chambers to be installed. The first periods of LHC operation have yielded much information both on the performance of the LHC and the stability and alignment of the experiments. In this paper, the new information relating to the aperture of these chambers is presented and a summary is made of analysis of parameters required to safely reduce the vacuum chambers apertures for the high-luminosity experiments ATLAS and CMS.  
 
WEPS018 The Proposed CERN Proton-Synchrotron Upgrade Program 2520
 
  • S.S. Gilardoni, S. Bart Pedersen, W. Bartmann, S. Bartolome, O.E. Berrig, C. Bertone, A. Blas, D. Bodart, J. Borburgh, R.J. Brown, A.C. Butterworth, M.C.L. Buzio, C. Carli, P. Chiggiato, H. Damerau, T. Dobers, R. Folch, R. Garoby, B. Goddard, M. Gourber-Pace, S. Hancock, M. Hourican, P. Le Roux, L.A. Lopez Hernandez, A. Masi, G. Metral, Y. Muttoni, E. Métral, M. Nonis, J. Pierlot, S. Pittet, C. Rossi, I. Ruehl, G. Rumolo, L. Sermeus, R.R. Steerenberg, M. Widorski
    CERN, Geneva, Switzerland
 
  In the framework of the High-Luminosity LHC project, the CERN Proton Synchrotron would require a major upgrade to match the future beam parameters requested as pre-injector of the collider. The different beam dynamics issues, from space-charge limitations to longitudinal instabilities are discussed, as well as the proposed technical solutions to overcome them, covering the increase of the injection energy to RF related improvements.  
 
WEPS022 Ions for LHC: Performance of the Injector Chain 2529
 
  • D. Manglunki, M. E. Angoletta, P. Baudrenghien, G. Bellodi, A. Blas, T. Bohl, C. Carli, E. Carlier, S. Cettour Cave, M. Chanel, K. Cornelis, H. Damerau, A. Findlay, S.S. Gilardoni, S. Hancock, J.M. Jowett, D. Kuchler, S. Maury, E. Métral, S. Pasinelli, M. Schokker, G. Tranquille, B. Vandorpe, U. Wehrle, J. Wenninger
    CERN, Geneva, Switzerland
 
  The first LHC Pb ion run took place at 1.38 A TeV/c per beam in autumn 2010. After a short period of running-in, the injector chain was able to fill the collider with up to 137 bunches per ring, with an intensity of 108 Pb ions/bunch, about 50% higher than the design value. This yielded a luminosity of 3E25 Hz/cm2, allowing the experiments to accumulate just under 10 inverse microbarn each during the four week run. We review the performance of the individual links of the injector chain, and address the main issues limiting the LHC luminosity, in view of reaching 1026 Hz/cm2 in 2011, and substantially beyond when the LHC energy increases after the long shutdown in 2013-14.  
 
THOBA01 Electron Cloud Observations in LHC 2862
 
  • G. Rumolo, G. Arduini, V. Baglin, H. Bartosik, P. Baudrenghien, N. Biancacci, G. Bregliozzi, S.D. Claudet, R. De Maria, J. Esteban Muller, M. Favier, C. Hansen, W. Höfle, J.M. Jimenez, V. Kain, E. Koukovini, G. Lanza, K.S.B. Li, G.H.I. Maury Cuna, E. Métral, G. Papotti, T. Pieloni, F. Roncarolo, B. Salvant, E.N. Shaposhnikova, R.J. Steinhagen, L.J. Tavian, D. Valuch, W. Venturini Delsolaro, F. Zimmermann
    CERN, Geneva, Switzerland
  • C.M. Bhat
    Fermilab, Batavia, USA
  • U. Iriso
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • N. Mounet, C. Zannini
    EPFL, Lausanne, Switzerland
 
  Operation of LHC with bunch trains different spacings has revealed the formation of an electron cloud inside the machine. The main observations of electron cloud build-up are the pressure rise measured at the vacuum gauges in the warm regions, as well as the increase of the beam screen temperature in the cold regions due to an additional heat load. The effects of the electron cloud were also visible as a strong instability and emittance growth affecting the last bunches of longer trains, which could be improved running with higher chromaticity and/or larger transverse emittances. A summary of the 2010 and 2011 observations and measurements and a comparison with existing models will be presented. The efficiency of scrubbing and scrubbing strategies to improve the machine running performance will be also briefly discussed.  
slides icon Slides THOBA01 [2.911 MB]