Author: Floettmann, K.     [Flöttmann, K.]
Paper Title Page
MOPC007 Cold Photocathode RF Gun 77
 
  • V. Vogel, K. Flöttmann, S. Schreiber
    DESY, Hamburg, Germany
 
  Heating and thermal expansion in the normal conductivity RF-photo electron gun, are the main limitations to achieve high accelerating gradient and consequently a low emittance beam. Some pure materials show a significant increase in thermal conductivity with a small coefficient of temperature expansion at temperatures around 20 degrees Kelvin. Possible materials are Molybdenum, Iridium or Tungsten. However, machining of these materials is very difficult. Therefore we propose a simplified shape for an L-band RF gun. We expect to achieve a significant increase in gradient for similar RF powers as used in the present DESY RF-gun. On the other hand, it would also be possible to increase the duty cycle keeping a moderate gradient. In this report we discuss one possible design of an RF-gun using hard metals and present simulations on thermal properties.  
 
WEPZ008 Experimental Plans to Explore Dielectric Wakefield Acceleration in the THz Regime 2781
 
  • F. Lemery, D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • C. Behrens, E. Elsen, K. Flöttmann, C. Gerth, G. Kube, B. Schmidt
    DESY, Hamburg, Germany
  • J. Osterhoff
    LBNL, Berkeley, California, USA
  • P. Stoltz
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work was supported by the Defense Threat Reduction Agency, Basic Research Award \# HDTRA1-10-1-0051, to Northern Illinois University
Dielectric wakefield accelerators have shown great promise toward high-gradient acceleration. We investigate tow experiments in preparation to explore the performance of cylindrically-symmetric and slab-shaped dielectric-loaded waveguides. The planned experiments at Fermilab and DESY will use unique pulse shaping capabilities offered at these facilities. The superconducting test accelerator at FNAL will ultimately provide flat beams with variable current profiles needed for enhancing the transformer ratio. The FLASH facility at DESY recently demonstrated the generation of a ramped round beam current profile that will enable us to explore the performance of cylindrically-symmetric structures. Finally both of these facilities incorporate superconducting linear accelerator that could generate bunch trains with closely spaced bunches thereby opening the exploration of dynamical effects in dielectric wakefield accelerators. We present the planned layout and simulated experimental performances.
 
 
THPC111 Operation of an L-band RF Gun with Pulses Inside the Burst Mode RF Pulse 3146
 
  • V. Vogel, V. Ayvazyan, B. Faatz, K. Flöttmann, D. Lipka, P. Morozov, H. Schlarb, S. Schreiber
    DESY, Hamburg, Germany
 
  The Free-Electron Laser in Hamburg (FLASH) is a user facility since 2005, delivering femtosecond short radiation pulses in the wavelength range between 4.1 and 44 nm using the SASE principle. In FLASH, the electron beam is accelerated to 1.25 GeV with L-band superconducting cavities. The electron source is a normal conducting RF-gun photoinjector. The L-band standing wave RF gun has one and a half cells. The gun is operated in burst mode with an RF pulse length of up to 900 microseconds and a repetition rate of 10 Hz. Several hundreds to thousands of bunches are accelerated per second. With 5 MW of pulsed forward power, the dissipated power inside the RF gun is 45 kW. In this paper we propose an operational mode which allows us to reduce the dissipated power to ease operation or to increase the effective duty cycle in the gun by pulsing the gun within one burst. We report on first experimental results at FLASH, where an RF burst of 46μRF-pulses with a length of 10 microseconds separated by 10 microseconds has been successfully generated reducing the dissipated power by a factor of 2.