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the power again while switching the RF phase by 180 
degrees. Presently on FLASH is the possibility to increase 
the input power only to 8% relative to the nominal level. 
Filling time can be about 10 µs and if a free gap between 
RF pulses will be 10 µs also, there is a possibility to reach 
repetition rate of 50 kHz, in the case if a single laser pulse 
will be on the end of each RF pulse. A thermal power loss 
in the gun cavity is twice low as in the normal mode. 
Late, when a 10 MW klystron will be available the filling 
time can be reduced up to 4 µs and we will get a flat top 
time of 6 µs, which allow us to reach up to 20 laser pulses 
during one short RF pulse and a total number of laser 
pulses as in standard operation. 

CONTROL ALGORITHM 
The FLASH RF gun control system uses a completely 

digital feedback system [6]. The control algorithm 
employs tables for feed-forward set-point and feedback 
gain settings to allow time varying of those parameters. 
The algorithm is implemented in firmware in FPGA 
(Field Programmable Gate Array) based digital controller 
board. Access to the FPGA recourses is provided via 
controller server. RF gun cavity has no field probe. RF 
field inside the cavity is determined by the forward and 
reflected power measured at the directional coupler in 
front of the gun. The signals are down-converted to the 
baseband and digitized with ADCs (sampling rate is 81 
MHz). The resulting field vectors of forward and reflected 
signals are multiplied by a rotation matrix to calibrate 
amplitudes and phases. The vector sum of the forward 
and reflected powers represents the total voltage and 
phase seen by the beam at the gun. This signal is 
regulated by a feedback control algorithm which 
calculates corrections to the driving signal of the klystron. 

 

 
Figure 3: Set-point (green) and measured vector-sum 
(black) amplitude and phase signals. 

The measured vector sum (virtual probe) is subtracted 
from the set-point table and the resulting error signal is 
amplified and filtered to provide a feedback signal to the 
vector modulator controlling the incident wave. A feed-
forward signal is added to correct the averaged repetitive 
error components. The real and imaginary parts of the 
calculated table are converted by the DACs separately 
and control the RF vector, applying the correction signal 
to the vector modulator. 

In order to provide RF gun operation in PIP mode 
dedicated table generation algorithm has been 
implemented to allow generation of control tables like 

feed-forward, set-point and gain according to required RF 
pulse structure. Gain scheduling for RF micro-pulses has 
been implemented as well to achieve maximum feedback 
gain exactly in time when the beam arrives. In Fig. 3 are 
shown set-point and measured vector sum signals for two 
consecutive micro-pulses in close loop with nominal gain 
of 12. 

PIP MODE: TEST RESULT 
The testing of PIP mode in FLASH was done in three 

stages. The goal of the first run (August 2009) was the 
examination of the hardware, software and optimization 
of RF pulse shape to reduce a level of reflected power 
from RF gun. The source of RF power for the gun in 
FLASH is 5 MW klystron (TH2104C), the bandwidth of 
this klystron is about 8 MHz which allows to use very 
short RF pulses with rise time less than 1 µs [4]. The RF 
gun of FLASH consist of a 1.5 cells normal conducting 
copper cavity with operating at 1.3 GHz and a peak 
accelerating field of 45 MV/m on the cathode, the 
external quality factor is about 23000 [2, 7]. 

 

     
 

Figure 4: Example of wave shapes of klystron current 
(white) and output power (brown). Vertical scale is in (A) 
for the current and in (dBm) for klystron output power.  

The length of the klystron high voltage pulse is about 
1.3 ms this allows to get a RF pulse length up to 900 µs. 
On Fig. 4 are shown wave shapes of 46 RF pulses each of 
10 µs RF on and 10 µs RF off time. In a second stage it 
was tested a transmission of 30 bunches through FLASH 
linac. Finally we have successfully run RF gun in PIP 
mode with SASE conditions and feedback loop closed. 
RF pulse structure settings: full pulse length 820 µs with 
33 RF pulses and 16 µs RF on and 9 µs RF off time, up to 
23 bunches with SASE, with energy of 60 µJ, measured 
in GMD (Gas Monitor Detector), beam charge of 0.7 nC, 
beam energy of 960 MeV, wavelength of 7.01 nm. SASE 
intensity distribution was very flat during the time 
duration up to 575 µs. The klystron was working with full 
output power about 5.2 MW; no breakdown in the gun 
cavity was observed. On Fig. 5 and 6 are shown wave 
shapes of amplitude and phase of forward and reflected 
power. Data was taking with 81 MHz ADC [8] on Fig. 5. 
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(a)                                 (b) 

Figure 5: (a) Wave shapes of input power and input phase 
of RF gun and (b) wave shapes of reflected power and 
phase of reflected power, after optimization of reducing a 
level of reflected power. 

and 1 MHz ADC on Fig. 6. The wave shape of forward 
power was optimized for reducing the maximum level of 
reflected power and reducing an emptied time. Figure 7 
shows the first SASE signal (µJ) in FLASH in PIP mode 
for a 20 pulse bunch train.  
 

       
 

Figure 6: Wave shapes of first six from 46 pulses. 
Forward power (above) and reflected power (bellow). 
Data was taken with 1 MHz ADC. 

Figure 7: Photon bunch energy for 20 bunches in PIP 
mode of FLASH operation. Recorded with GMD 
detector; blue - actual pulse, green - running average, 
yellow - peak readings. 

CONCLUSIONS 
Thermal losses [2, 3, 9] in the normal conductive RF 

gun are a main limiting factor to reach a high gradient and 
high repetition rate of operation. The proposed PIP mode 
of operation can allow reducing power losses in the RF 
gun by splitting one long RF pulses into many short 
pulses with power free gaps in between. The flat top of 
this short RF pulse can be used for acceleration of many 
of electron bunches. A relation between a length of free 
gaps and flat top gives a factor of reduction power losses 
in the gun.  The filling and decay time in the gun cavity 
can be reduced by increasing the level of input RF power 
and switching phase to opposite phases during emptied 
time. 

 Operation FLASH in PIP mode can provide to users 
several new options: two light pulses separated by 900 µs, 
three separated by 450 µs, etc. up to 25 µs between two 
adjacent pulses. 
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