Author: Fernandez-Hernando, J.-L.     [Fernández-Hernando, J.-L.]
Paper Title Page
TUPC162 Thin Foil-based Secondary Emission Monitor for Low Intensity, Low Energy Beam Profile Measurements 1413
  • J. Harasimowicz, J.-L. Fernández-Hernando, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • L. Cosentino, P. Finocchiaro, A. Pappalardo
    INFN/LNS, Catania, Italy
  • J. Harasimowicz
    The University of Liverpool, Liverpool, United Kingdom
  Funding: Work supported by STFC, the EU under GA-ITN-215080, the Helmholtz Association and GSI under VH-NG-328.
A secondary emission monitor (SEM) was developed for beam profile measurements at the Ultra-low energy Storage Ring (USR) that will be installed at the future Facility for Low-energy Antiproton and Ion Research (FLAIR) in Darmstadt, Germany. The detector consists of an Aluminium foil on negative potential, a grounded mesh placed in front of the foil, a chevron type microchannel plate (MCP), a phosphor screen and a camera connected to a PC. Simulations of the optimized design together with experimental results with keV protons are presented in this contribution. In addition, the usability of the detector for low energy antiproton beam profile measurements is discussed.
TUODA03 The Status of the ALICE Accelerator R&D Facility at STFC Daresbury Laboratory 934
  • F. Jackson, D. Angal-Kalinin, R. Bate, R.K. Buckley, S.R. Buckley, J.A. Clarke, P.A. Corlett, D.J. Dunning, J.-L. Fernández-Hernando, A.R. Goulden, S.F. Hill, D.J. Holder, S.P. Jamison, J.K. Jones, L.B. Jones, A. Kalinin, S. Leonard, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, A.J. Moss, B.D. Muratori, T.T. Ng, J.F. Orrett, S.M. Pattalwar, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, A.D. Smith, R.J. Smith, S.L. Smith, N. Thompson, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Harrison, G.M. Holder, A.L. Schofield, P. Weightman, R.L. Williams, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • M.D. Roper
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • M. Surman
    STFC/DL/SRD, Daresbury, Warrington, Cheshire, United Kingdom
  Funding: Science and Technology Facilities Council
The ALICE accelerator, the first energy recovery machine in Europe, has recently demonstrated lasing of an infra-red free electron laser (IR-FEL). The current status of the machine and recent developments are described. These include: lasing of the IR-FEL, a programme of powerful coherent terahertz radiation research, electro-optic diagnostic techniques, development of high precision timing and distribution system, implementation of digital low level RF control. ALICE also serves as an injector for the EMMA non-scaling FFAG machine.
slides icon Slides TUODA03 [1.648 MB]  
TUPS041 Thermo-mechanical Study of a CLIC Bunch Train hitting a Beryllium Energy Spoiler Model 1629
  • J.-L. Fernández-Hernando, D. Angal-Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J. Resta-López
    IFIC, Valencia, Spain
  A thermo-mechanical study of the impact a CLIC bunch train has over a beryllium energy spoiler has been made. Beryllium has a high electrical and thermal conductivity which together with a large radiation length compared to other metals makes it an optimal candidate for a long tapered design spoiler that will not generate high wakefields, which might degrade the orbit stability and affect the collider luminosity. This paper shows the progress made from the paper presented last year in IPAC 2010. While in the aforementioned paper the study of the temperature and stress was made for the duration of the bunch train this time the study shows the evolution of the stress in the spoiler body 3 microseconds after the bunch train hit.  
WEPC176 Beam Loss Monitoring and Machine Protection System Design and Application for the ALICE Test Accelerator at Daresbury Laboratory 2400
  • S.R. Buckley, J.-L. Fernández-Hernando
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  ALICE is a demonstrator accelerator system which has been designed and built at Daresbury Laboratory. The heart of this facility is an ERL accelerator and a powerful multi-terrawatt laser. It serves as an advanced test facility for novel accelerator and photon science applications. Beam loss monitoring and machine protection systems are vital areas for the successful operation of ALICE. These systems are required, both for efficient machine set up and for hardware protection during operation. This paper gives an overview of the system design, commissioning details and a summary of the systems’ effectiveness as a diagnostic tool.